Publications

Results 26–39 of 39
Skip to search filters

Radiation-induced off-state leakage current in commercial power MOSFETs

Proposed for publication in the IEEE Transactions on Nuclear Science.

Felix, James A.; Shaneyfelt, Marty R.; Dodd, Paul E.; Draper, Bruce L.; Schwank, James R.; Dalton, Scott D.

The total dose hardness of several commercial power MOSFET technologies is examined. After exposure to 20 krad(SiO{sub 2}) most of the n- and p-channel devices examined in this work show substantial (2 to 6 orders of magnitude) increases in off-state leakage current. For the n-channel devices, the increase in radiation-induced leakage current follows standard behavior for moderately thick gate oxides, i.e., the increase in leakage current is dominated by large negative threshold voltage shifts, which cause the transistor to be partially on even when no bias is applied to the gate electrode. N-channel devices biased during irradiation show a significantly larger leakage current increase than grounded devices. The increase in leakage current for the p-channel devices, however, was unexpected. For the p-channel devices, it is shown using electrical characterization and simulation that the radiation-induced leakage current increase is related to an increase in the reverse bias leakage characteristics of the gated diode which is formed by the drain epitaxial layer and the body. This mechanism does not significantly contribute to radiation-induced leakage current in typical p-channel MOS transistors. The p-channel leakage current increase is nearly identical for both biased and grounded irradiations and therefore has serious implications for long duration missions since even devices which are usually powered off could show significant degradation and potentially fail.

More Details

Arsenic ion implant energy effects on CMOS gate oxide hardness

Proposed for publication in the IEEE Transactions on Nuclear Science.

Draper, Bruce L.; Shaneyfelt, Marty R.; Young, Ralph W.; Headley, Thomas J.; Dondero, Richard D.

Under conditions that were predicted as 'safe' by well-established TCAD packages, radiation hardness can still be significantly degraded by a few lucky arsenic ions reaching the gate oxide during self-aligned CMOS source/drain ion implantation. The most likely explanation is that both oxide traps and interface traps are created when ions penetrate and damage the gate oxide after channeling or traveling along polysilicon grain boundaries during the implantation process.

More Details

Generation of metastable electron traps in the near interfacial region of SOI buried oxides by ion implantation and their effect on device properties

Microelectronic Engineering

Schwank, James R.; Fleetwood, D.M.; Xiong, H.D.; Shaneyfelt, Marty R.; Draper, Bruce L.

Implanting the buried oxide of silicon-on-insulator technologies can create electron traps throughout the buried oxide that can compensate the buildup of radiation-induced positive charge. These can be used as an effective method for total-dose hardening buried oxides in SOI devices. In this work, we show that implanting buried oxides can also create thermally activated metastable electron traps near the top Si/SiO2 border. These metastable electron traps can produce significant bias instabilities in the back-gate transistor characteristics and lead to threshold voltage instabilities in fully-depleted devices. © 2004 Elsevier B.V. All rights reserved.

More Details

Patch-clamp array with on-chip electronics, optics, flow control and mechanical actuation

Okandan, Murat O.; James, Conrad D.; Mani, Seethambal S.; Draper, Bruce L.

Fast and quantitative analysis of cellular activity, signaling and responses to external stimuli is a crucial capability and it has been the goal of several projects focusing on patch clamp measurements. To provide the maximum functionality and measurement options, we have developed a patch clamp array device that incorporates on-chip electronics, mechanical, optical and microfluidic coupling as well as cell localization through fluid flow. The preliminary design, which integrated microfluidics, electrodes and optical access, was fabricated and tested. In addition, new designs which further combine mechanical actuation, on-chip electronics and various electrode materials with the previous designs are currently being fabricated.

More Details

A novel method of fabricating integrated FETs for MEMS applications

Proposed for publication in the IEEE Journal of Microelectromechanical Systems.

Draper, Bruce L.; Okandan, Murat O.; Mani, Seethambal S.; Bennett, Reid S.

This paper demonstrates a simple technique for building n-channel MOSFETs and complex micromechanical systems simultaneously instead of serially, allowing a more straightforward integration of complete systems. The fabrication sequence uses few additional process steps and only one additional masking layer compared to a MEMS-only technology. The process flow forms the MOSFET gate electrode using the first level of mechanical polycrystalline silicon, while the MOSFET source and drain regions are formed by dopant diffusions into the substrate from subsequent levels of heavily doped poly that is used for mechanical elements. The process yields devices with good, repeatable electrical characteristics suitable for a wide range of digital and analog applications.

More Details

Single-Event Upset and Snapback in Silicon-on-Insulator Devices and Integrated Circuits

IEEE Transactions on Nuclear Science

Dodd, Paul E.; Shaneyfelt, Marty R.; Walsh, David S.; Schwank, James R.; Hash, Gerald L.; Jones, Rhonda L.; Draper, Bruce L.; Winokur, Peter S.

The characteristics Of ion-induced charge collection and single-event upset are studied in SOI transistors and circuits with various body tie structures. Impact ionization effects including single-event snapback are shown to be very important. Focused ion microbeam experiments are used to find single-event snapback drain voltage thresholds in n-channel SOI transistors as a function of device width. Three-Dimensional device simulations are used to determine single-event upset and snapback thresholds in SOI SRAMS, and to study design tradeoffs for various body-tie structures. A window of vulnerability to single-event snapback is shown to exist below the single-event upset threshold. The presence of single-event snapback in commercial SOI SRAMS is confirmed through broadbeam ion testing, and implications for hardness assurance testing of SOI integrated circuits are discussed.

More Details

Correlation between Co-60 and x-ray exposures on radiation-induced charge buildup in silicon-on-insulator buried oxides

Schwank, James R.; Shaneyfelt, Marty R.; Jones, Rhonda L.; Draper, Bruce L.; Dodd, Paul E.; Witczak, Steven C.; Riewe, Leonard C.

Large differences in charge buildup in SOI buried oxides can result between x-ray and Co-60 irradiations. The effects of bias configuration and substrate type on charge buildup and hardness assurance issues are explored.

More Details
Results 26–39 of 39
Results 26–39 of 39