Publications

Results 51–64 of 64
Skip to search filters

High reliability low jitter 80 kV pulse generator

Proposed for publication in Physical Review: Special Topics on Accelerators and Beams.

Savage, Mark E.; Stoltzfus, Brian S.

Switching can be considered to be the essence of pulsed power. Time accurate switch/trigger systems with low inductance are useful in many applications. This article describes a unique switch geometry coupled with a low-inductance capacitive energy store. The system provides a fast-rising high voltage pulse into a low impedance load. It can be challenging to generate high voltage (more than 50 kilovolts) into impedances less than 10 {Omega}, from a low voltage control signal with a fast rise time and high temporal accuracy. The required power amplification is large, and is usually accomplished with multiple stages. The multiple stages can adversely affect the temporal accuracy and the reliability of the system. In the present application, a highly reliable and low jitter trigger generator was required for the Z pulsed-power facility [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats,J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K.W. Struve, W.A. Stygar, L.K. Warne, and J. R. Woodworth, 2007 IEEE Pulsed Power Conference, Albuquerque, NM (IEEE, Piscataway, NJ, 2007), p. 979]. The large investment in each Z experiment demands low prefire probability and low jitter simultaneously. The system described here is based on a 100 kV DC-charged high-pressure spark gap, triggered with an ultraviolet laser. The system uses a single optical path for simultaneously triggering two parallel switches, allowing lower inductance and electrode erosion with a simple optical system. Performance of the system includes 6 ns output rise time into 5.6 {Omega}, 550 ps one-sigma jitter measured from the 5 V trigger to the high voltage output, and misfire probability less than 10{sup -4}. The design of the system and some key measurements will be shown in the paper. We will discuss the design goals related to high reliability and low jitter. While reliability is usually important, and is coupled with jitter, reliability is seldom given more than a qualitative analysis (if any at all). We will show how reliability of the system was calculated, and results of a jitter-reliability tradeoff study. We will describe the behavior of sulfur hexafluoride as the insulating gas in the mildly nonuniform field geometry at pressures of 300 to 500 kPa. We will show the resistance of the arc channels, and show the performance comparisons with normal two-channel operation, and single channel operation.

More Details

Shaping the output pulse of a linear-transformer-driver module

Proposed for publication in Physical Review Special Topics: Accelerators and Beams.

Stygar, William A.; Stoltzfus, Brian S.; Woodworth, Joseph R.; Fowler, William E.; LeChien, Keith R.; Long, Finis W.; Mazarakis, Michael G.; McKee, George R.; Mckenney, John M.; Savage, Mark E.

We demonstrate that a wide variety of current-pulse shapes can be generated using a linear-transformer-driver (LTD) module that drives an internal water-insulated transmission line. The shapes are produced by varying the timing and initial charge voltage of each of the module's cavities. The LTD-driven accelerator architecture outlined in [Phys. Rev. ST Accel. Beams 10, 030401 (2007)] provides additional pulse-shaping flexibility by allowing the modules that drive the accelerator to be triggered at different times. The module output pulses would be combined and symmetrized by water-insulated radial-transmission-line impedance transformers [Phys. Rev. ST Accel. Beams 11, 030401 (2008)].

More Details

Precision electron flow measurements in a disk transmission line

Savage, Mark E.; Pointon, Timothy D.; Stoltzfus, Brian S.

An analytic model for electron flow in a system driving a fixed inductive load is described and evaluated with particle in cell simulations. The simple model allows determining the impedance profile for a magnetically insulated transmission line given the minimum gap desired, and the lumped inductance inside the transition to the minimum gap. The model allows specifying the relative electron flow along the power flow direction, including cases where the fractional electron flow decreases in the power flow direction. The electrons are able to return to the cathode because they gain energy from the temporally rising magnetic field. The simulations were done with small cell size to reduce numerical heating. An experiment to compare electron flow to the simulations was done. The measured electron flow is {approx}33% of the value from the simulations. The discrepancy is assumed to be due to a reversed electric field at the cathode because of the inductive load and falling electron drift velocity in the power flow direction. The simulations constrain the cathode electric field to zero, which gives the highest possible electron flow.

More Details

Bulk breakdown in rexolite for non-uniform field geometries and single polarity pulses

Digest of Technical Papers-IEEE International Pulsed Power Conference

Stoltzfus, Brian S.; Savage, Mark E.

Although there is much written in regards to voltage breakdown of polymeric insulators under AC and DC conditions, much less is written involving Rexolite® (1422) [1], non-uniform field geometries, and impulse conditions. Yet, in order to design optimized pulsed power systems with some desired degree of reliability, understanding the behavior of this type of insulating system is needed. Specifically, Sandia National Laboratory's ZR project, which will use anode plugs in the vacuum stack (thus increasing the electrical stress in the Rexolite insulators), needs to be able to estimate the reliability of these vacuum stack insulators [2]. In an effort to estimate the insulator's lifetime small scale testing is in progress. Nine samples have been tested so far and at least ten more will be tested. Results from the current testing suggest that the Rexolite "ages" from pulse to pulse, that there is some volume dependence on breakdown strength, and that the electrode-vacuum-insulator interface has an affect on the insulator lifetime. ©2005 IEEE.

More Details

Copy of An overview of pulse compression and power flow in the upgraded Z pulsed power driver

Savage, Mark E.; Maenchen, John E.; McDaniel, Dillon H.; Pasik, Michael F.; Pointon, Timothy D.; Owen, Albert C.; Seidel, David B.; Stoltzfus, Brian S.; Struve, Kenneth W.; Warne, Larry K.; Bennett, Lawrence F.; Woodworth, Joseph R.; Bliss, David E.; Clark, Waylon T.; Coats, Rebecca S.; Elizondo-Decanini, Juan M.; LeChien, Keith R.; Harjes, Henry C.; Lehr, J.M.

Abstract not provided.

Results 51–64 of 64
Results 51–64 of 64