Publications

Results 1–25 of 144
Skip to search filters

Enhancing safety of hydrogen containment components through materials testing under in-service conditions

International Journal of Hydrogen Energy

Somerday, Brian P.; Campbell, J.A.; Lee, Kenneth L.; Ronevich, Joseph A.; San Marchi, Christopher W.

The capabilities in the Hydrogen Effects on Materials Laboratory (HEML) at Sandia National Laboratories and the related materials testing activities that support standards development and technology deployment are reviewed. The specialized systems in the HEML allow testing of structural materials under in-service conditions, such as hydrogen gas pressures up to 138 MPa, temperatures from ambient to 203 K, and cyclic mechanical loading. Examples of materials testing under hydrogen gas exposure featured in the HEML include stainless steels for fuel cell vehicle balance of plant components and Cr[sbnd]Mo steels for stationary seamless pressure vessels.

More Details

Hydrogen Assisted Fracture of Stainless Steels

Sugar, Joshua D.; Somerday, Brian P.; Homer, Mark H.; Vitale, Suzy V.; Matsuda, Junko M.

The Enhanced Surveillance Sub-program has an annual NNSA requirement to submit a comprehensive report on all our fiscal year activities right after the start of the next calendar year. As most of you know, we collate all of our PI task submissions into a single volume that we send to NNSA, our customers, and use for other programmatic purposes. The functional objective of this report is to formally document the purpose, status, and accomplishments and impacts of all our work. For your specific submission, please follow the instructions described below and use the template provided. These are essentially the same as was used last year. We recognize this report may also include information on specific age-related findings that you will provide again in a few months as input to the Stockpile Annual Assessment process (e.g., in the submittal of your Component Assessment Report). However, the related content of your ES AR input should provide an excellent foundation that can simply be updated as needed for your Annual Assessment input.

More Details

Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels

International Journal of Fatigue

Ronevich, Joseph A.; Somerday, Brian P.; San Marchi, Christopher W.

Banded ferrite-pearlite X65 pipeline steel was tested in high pressure hydrogen gas to evaluate the effects of oriented pearlite on hydrogen assisted fatigue crack growth. Test specimens were oriented in the steel pipe such that cracks propagated either parallel or perpendicular to the banded pearlite. The ferrite-pearlite microstructure exhibited orientation dependent behavior in which fatigue crack growth rates were significantly lower for cracks oriented perpendicular to the banded pearlite compared to cracks oriented parallel to the bands. The reduction of hydrogen assisted fatigue crack growth across the banded pearlite is attributed to a combination of crack-tip branching and impeded hydrogen diffusion across the banded pearlite.

More Details

Assessing gaseous hydrogen assisted fatigue crack growth susceptibility of pipeline steel weld fusion zones and heat affected zones

Materials Performance and Characterization

Ronevich, Joseph A.; Somerday, Brian P.

The objective of this work was twofold: (1) measure reliable fatigue crack growth relationships for X65 steel and its girth weld in high-pressure hydrogen gas to enable structural integrity assessments of hydrogen pipelines, and (2) evaluate the hydrogen accelerated fatigue crack growth susceptibility of the weld fusion zone and heat-affected zone relative to the base metal. Fatigue crack growth relationships (da/dN versus ΔK) were measured for girth welded X65 pipeline steel in high pressure hydrogen gas (21 MPa) and in air. Hydrogen assisted fatigue crack growth was observed for the base metal (BM), fusion zone (FZ), and heat-affected zone (HAZ), and was manifested through crack growth rates reaching nearly an order of magnitude acceleration over rates in air. At higher ΔK values, crack growth rates of BM, FZ, and HAZ were coincident; however, at lower ΔK, the fatigue crack growth relationships exhibited some divergence with the fusion zone having the highest crack growth rates. These relative fatigue crack growth rates in the BM, FZ, and HAZ were provisional, however, since both crack closure and residual stress contributed to the crack-tip driving force in specimens extracted from the HAZ. Despite the relatively high applied R-ratio (R = 0.5), crack closure was detected in the heat affected zone tests, in contrast to the absence of crack closure in the base metal tests. Crack closure corrections were performed using the adjusted compliance ratio method and the effect of residual stress on Kmax was determined by the crack-compliance method. Crack-tip driving forces that account for closure and residual stress effects were quantified as a weighted function of ΔK and Kmax (i.e., Knorm), and the resulting da/dN versus Knorm relationships showed that the HAZ exhibited higher hydrogen accelerated fatigue crack growth rates than the BM at lower Knorm values.

More Details

R&D for Safety Codes and Standards: Materials and Components Compatibility

Somerday, Brian P.; LaFleur, Chris B.; San Marchi, Christopher W.

This project addresses the following technical barriers from the Safety, Codes and Standards section of the 2012 Fuel Cell Technologies Office Multi-Year Research, Development and Demonstration Plan (section 3.8): (A) Safety data and information: limited access and availability (F) Enabling national and international markets requires consistent RCS (G) Insufficient technical data to revise standards.

More Details

Optimizing measurement of fatigue crack growth relationships for Cr-Mo pressure vessel steels in hydrogen gas

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Somerday, Brian P.; Bortot, Paolo; Felbaum, John

The objective of this study was to explore an approach for measuring fatigue crack growth rates (da/dN) for Cr-Mo pressure vessel steels in high-pressure hydrogen gas over a broad cyclic stress intensity factor (ΔK) range while limiting test duration, which could serve as an alternative to the method prescribed in ASME BPVC VIII-3, Article KD-10. Fatigue crack growth rates were measured for SA-372 Grade J and 34CrMo4 steels in hydrogen gas as a function of ΔK, loadcycle frequency (f), and gas pressure. The da/dN vs. ΔK relationships measured for the Cr-Mo steels in hydrogen gas at 10 Hz indicate that capturing data at lower ΔK is valuable when these relationships serve as inputs into design-life analyses of hydrogen pressure vessels, since in this ΔK range crack growth rates in hydrogen gas approach rates in air. The da/dN vs. f data measured for the Cr-Mo steels in hydrogen gas at selected constant-ΔK levels demonstrate that crack growth rates at 10 Hz do not represent upper-bound behavior, since da/dN generally increases as f decreases. Consequently, although fatigue crack growth testing at 10 Hz can efficiently measure da/dN over a wide ΔK range, these da/dN vs. ΔK relationships at 10 Hz cannot be considered reliable inputs into design-life analyses. A possible hybrid approach to efficiently establishing the fatigue crack growth rate relationship in hydrogen gas without compromising data quality is to measure the da/dN vs. ΔK relationship at 10 Hz and then apply a correction based on the da/dN vs. f data. The reliability of such a hybrid approach depends on adequacy of the da/dN vs. f data, i.e., the data are measured at appropriate constant-ΔK levels and the data include upper-bound crack growth rates.

More Details

Measurement of Fatigue Crack Growth Relationships in Hydrogen Gas for Pressure Swing Adsorber Vessel Steels

Journal of Pressure Vessel Technology

Somerday, Brian P.

We measured the hydrogen-assisted fatigue crack growth rates (da/dN) for SA516 Grade 70 steel as a function of stress-intensity factor range (ΔK) and load-cycle frequency to provide life-prediction data relevant to pressure swing adsorber (PSA) vessels. For ΔK values up to 18.5 MPa m1/2, the baseline da/dN versus ΔK relationship measured at 1Hz in 2.8 MPa hydrogen gas represents an upper bound with respect to crack growth rates measured at lower frequency. However, at higher ΔK values, we found that the baseline da/dN data had to be corrected to account for modestly higher crack growth rates at the lower frequencies relevant to PSA vessel operation.

More Details

Hydrogen compatibility of austenitic stainless steel tubing and orbital tube welds

International Journal of Hydrogen Energy

Hughes, Lauren A.; Somerday, Brian P.; Balch, Dorian K.; San Marchi, Christopher W.

Refueling infrastructure for use in gaseous hydrogen powered vehicles requires extensive manifolding for delivering the hydrogen from the stationary fuel storage at the refueling station to the vehicle as well as from the mobile storage on the vehicle to the fuel cell or combustion engine. Manifolds for gas handling often use welded construction (as opposed to compression fittings) to minimize gas leaks. Therefore, it is important to understand the effects of hydrogen on tubing and tubing welds. This paper provides a brief overview of on-going studies on the effects of hydrogen precharging on the tensile properties of austenitic stainless tubing and orbital tube welds.

More Details
Results 1–25 of 144
Results 1–25 of 144