Z-Pinch-Driven HEDP at Sandia's Center for Pulsed Power Sciences
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Communications in Computational Physics
Flute mode turbulence plays an important role in numerous applications, such as tokamak, Z-pinch, space and astrophysical plasmas. In a low beta plasma flute oscillations are electrostatic and in the nonlinear stage they produce large scale density structures co-mingling with short scale oscillations. Large scale structures are responsible for the enhanced transport across the magnetic field and appearance of short scales leads to ion heating, associated with the ion viscosity. In the present paper nonlinear equations which describe the nonlinear evolution of the flute modes treated as compressible electromagnetic oscillations in a finite beta inhomogeneous plasma with nonuniform magnetic field are derived and solved numerically. For this purpose the 2D numerical code FLUTE was developed. Numerical results show that even in a finite beta plasma flute mode instability can develop along with formation of large scale structures co-existing with short scale perturbations in the nonlinear stage. © 2008 Global-Science Press.
AIP Conference Proceedings
The Z machine at Sandia National Laboratories drives 20 MA in 100 ns through a cylindrical array of fine wires which implodes due to the strong j × B force, generating up to 250 TW of soft x-ray radiation when the z-pinch plasma stagnates on axis. The copious broadband self-emission makes the dynamics of the implosion well suited to diagnosis with soft x-ray imaging and spectroscopy. A monochromatic self-emission imaging instrument has recently been developed on Z which reflects pinhole images from a multilayer mirror onto a 1 ns gated microchannel plate detector. The multilayer can be designed to provide narrowband (∼10 eV) reflection in the 100-700 eV photon energy range, allowing observation of the soft emission from accreting mass as it assembles into a hot, dense plasma column on the array axis. In the present instrument configuration, data at 277 eV photon energy have been obtained for plasmas ranging from Al to W, and the z-pinch implosion and stagnation will be discussed along with > 1 keV self-emission imaging and spectroscopy. Collisional-radiative simulations are currently being pursued in order to link the imaged emissivity to plasma temperature and density profiles and address the role of opacity in interpreting the data. © 2007 American Institute of Physics.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Communications in Computational Physics
Abstract not provided.
IEEE Transactions on Plasma Science (special issue on Images in Plasma Science)
Abstract not provided.
Abstract not provided.
A series of twelve shots were performed on the Saturn generator in order to conduct an initial evaluation of the planar wire array z-pinch concept at multi-MA current levels. Planar wire arrays, in which all wires lie in a single plane, could offer advantages over standard cylindrical wire arrays for driving hohlraums for inertial confinement fusion studies as the surface area of the electrodes in the load region (which serve as hohlraum walls) may be substantially reduced. In these experiments, mass and array width scans were performed using tungsten wires. A maximum total radiated x-ray power of 10 {+-} 2 TW was observed with 20 mm wide arrays imploding in {approx}100 ns at a load current of {approx}3 MA, limited by the high inductance. Decreased power in the 4-6 TW range was observed at the smallest width studied (8 mm). 10 kJ of Al K-shell x-rays were obtained in one Al planar array fielded. This report will discuss the zero-dimensional calculations used to design the loads, the results of the experiments, and potential future research to determine if planar wire arrays will continue to scale favorably at current levels typical of the Z machine. Implosion dynamics will be discussed, including x-ray self-emission imaging used to infer the velocity of the implosion front and the potential role of trailing mass. Resistive heating has been previously cited as the cause for enhanced yields observed in excess of jxB-coupled energy. The analysis presented in this report suggests that jxB-coupled energy may explain as much as the energy in the first x-ray pulse but not the total yield, which is similar to our present understanding of cylindrical wire array behavior.
Physics of Plasmas
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Plasma Science
Abstract not provided.
Proceedigns from the 2007 PPPC Conference
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review E
Abstract not provided.
Abstract not provided.
Abstract not provided.