Recent experiments on the refurbished Z-machine were conducted using large diameter stainless steel arrays which produced x-ray powers of 260 TW. Follow-up experiments were then conducted utilizing tungsten wires with approximately the same total mass with the hypothesis that the total x-ray power would increase. On the large diameter tungsten experiments, the x-ray power averaged over 300 TW and the total x-ray energy was greater than 2MJ. Different analysis techniques for inferring the x-ray power will be described in detail.
AASC is designing multiple-shell gas puff loads for Z. Here we assess the influence of the loads initial gas distribution on its K-shell yield performance. Emphasis is placed on designing an optimal central jet initial gas distribution, since it is believed to have a controlling effect on pinch stability, pinch conditions, and radiation physics. We are looking at distributions that optimize total Ar K-shell emission and high energy (>10 KeV) continuum radiation. This investigation is performed with the Mach2 MHD code with non-LTE kinetics and ray trace based radiation transport.