Micrograph of PLZT
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Abstract not provided.
Materials Science and Technology Conference and Exhibition, MS and T'07 - "Exploring Structure, Processing, and Applications Across Multiple Materials Systems"
Pre-oxidized and glass-to-metal (GtM) sealed austenitic stainless steels were found to display a ferritic layer near the metal/oxide interface, as determined by electron backscatter diffraction (EBSD). Electron probe microanalysis (EPMA) showed that this layer was depleted in alloying elements due to the oxidation and sealing process. Characterization of the morphology suggested that it formed through the martensite transformation mechanism. Moreover, this observed layer was correlated to the composition gradient through published empirical relationships for martensite-start (Ms) temperatures. Due to Cr, Mn, and Si depletion during pre-oxidation and glass sealing, Ms temperatures near room temperature are possible in this surface region. Further support for a martensitic transformation was provided by thermochemical modeling. Possible detrimental ramifications of bulk composition, surface depletion, and phase transformations on GtM sealing are discussed. Copyright © 2007 MS&T'07®.
Microtubules and motor proteins are protein-based biological agents that work cooperatively to facilitate the organization and transport of nanomaterials within living organisms. This report describes the application of these biological agents as tools in a novel, interdisciplinary scheme for assembling integrated nanostructures. Specifically, selective chemistries were used to direct the favorable adsorption of active motor proteins onto lithographically-defined gold electrodes. Taking advantage of the specific affinity these motor proteins have for microtubules, the motor proteins were used to capture polymerized microtubules out of suspension to form dense patterns of microtubules and microtubule bridges between gold electrodes. These microtubules were then used as biofunctionalized templates to direct the organization of functionalized nanocargo including single-walled carbon nanotubes and gold nanoparticles. This biologically-mediated scheme for nanomaterials assembly has shown excellent promise as a foundation for developing new biohybrid approaches to nanoscale manufacturing.
Proceedings of the 3rd International Brazing and Soldering Conference
An oxidation treatment, often termed "pre-oxidation", is performed on austenitic stainless steel prior to glass/metal joining to produce hermetic seals. The resulting thin oxide acts as a transitional layer and a source of Cr and other elements which diffuse into the glass during the subsequent bonding process. Pre-oxidation is performed in a low pO 2 atmosphere to avoid iron oxide formation and the final oxide is composed of Cr 2O 3, MnCr 2O 4 spinel, and SiO 2. Significant heat-to-heat variations in the oxidation behavior of 304L stainless steel have been observed, which result in inconsistent glass/metal seal behavior. The objectives of this work were to characterize the oxidation kinetics, the oxide morphology and composition, and the stainless steel attributes that lead to robust glass/metal seals. The oxidation kinetics were determined by thermogravimetric (TG) analysis and the oxide layers were characterized using metallography, SEM, focused ion beam (FIB) analysis, and image analysis. The results show that poor sealing behavior is associated with slower oxidation kinetics and a more continuous layer of SiO 2 at the metal/oxide interface. In addition, the effects of 304L heat composition on oxidation behavior will be discussed. Copyright © 2006 ASM International®.
Ceramic Engineering and Science Proceedings
An oxidation treatment, often termed "pre-oxidation", is performed on austenitic stainless steel prior to joining to alkali barium silicate glass to produce hermetic seals. The resulting thin oxide acts as a transitional layer and a source of Cr and other elements which diffuse into the glass during the subsequent bonding process. Pre-oxidation is performed in a low pO2 atmosphere to avoid iron oxide formation and the final oxide is composed of Cr2O3, MnCr2O4 spinel, and SiO2. Significant heat-to-heat variations in the oxidation behavior of 304L stainless steel have been observed, which result in inconsistent glass-to-metal (GTM) seal behavior. The objectives of this work were to characterize the stainless steel pre-oxidized layer and the glass/oxide/304L interface region after glass sealing. The 304L oxidation kinetics were determined by thermogravimetric (TG) analysis and the glass/metal seals characteristics were studied using sessile drop tests, in which wetting angles were measured and glass adhesion was analyzed. The pre-oxidized layers and glass/metal interface regions were characterized using metallography, focused ion beam (FIB) sectioning, scanning and transmission electron microscopy, and electron probe microanalysis (EPMA). The results show that poor glass sealing behavior is associated with a more continuous layer of SiO 2 at the metal/oxide interface.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Solution-based synthesis is a powerful approach for creating nano-structured materials. Although there have been significant recent successes in its application to fabricating nanomaterials, the general principles that control solution synthesis are not well understood. The purpose of this LDRD project was to develop the scientific principles required to design and build unique nanostructures in crystalline oxides and II/VI semiconductors using solution-based molecular self-assembly techniques. The ability to synthesize these materials in a range of different nano-architectures (from controlled morphology nanocrystals to surface templated 3-D structures) has provided the foundation for new opportunities in such areas as interactive interfaces for optics, electronics, and sensors. The homogeneous precipitation of ZnO in aqueous solution was used primarily as the model system for the project. We developed a low temperature, aqueous solution synthesis route for preparation of large arrays of oriented ZnO nanostructures. Through control of heterogeneous nucleation and growth, methods to predicatively alter the ZnO microstructures by tailoring the surface chemistry of the crystals were established. Molecular mechanics simulations, involving single point energy calculations and full geometry optimizations, were developed to assist in selecting appropriate chemical systems and understanding physical adsorption and ultimately growth mechanisms in the design of oxide nanoarrays. The versatility of peptide chemistry in controlling the formation of cadmium sulfide nanoparticles and zinc oxide/cadmium sulfide heterostructures was also demonstrated.
Proposed for publication in Journal of the American Chemical Society.
We report for the first time a one-step, templateless method to directly prepare large arrays of oriented TiO{sub 2}-based nanotubes and continuous films. These titania nanostructures can also be easily prepared as conformal coatings on a substrate. The nanostructured films were formed on a Ti substrate seeded with TiO{sub 2} nanoparticles. SEM and TEM results suggested that a folding mechanism of sheetlike structures was involved in the formation of the nanotubes. The oriented arrays of TiO{sub 2} nanotubes, continuous films, and coatings are expected to have potentials for applications in catalysis, filtration, sensing, photovoltaic cells, and high surface area electrodes.
The Materials Chemistry Department 1846 has developed a lab-scale chem-prep process for the synthesis of PNZT 95/5, referred to as the ''SP'' process (Sandia Process). This process (TSP) has been successfully transferred to and scaled-up by Department 14192 (Ceramics and Glass Department), producing the larger quantities of PZT powder required to meet the future supply needs of Sandia for neutron generator production. The particle size distributions of TSP powders routinely have been found to contain a large particle size fraction that was absent in development (SP) powders. This SAND report documents experimental studies focused on characterizing these particles and assessing their potential impact on material performance. To characterize these larger particles, fractionation of several TSP powders was performed. The ''large particle size fractions'' obtained were characterized by particle size analysis, SEM, and ICP analysis and incorporated into compacts and sintered. Large particles were found to be very similar in structure and composition as the bulk of the powder. Studies showed that the large-size fractions of the powders behave similarly to the non-fractionated powder with respect to the types of microstructural features once sintered. Powders were also compared that were prepared using different post-synthesis processing (i.e. differences in precipitate drying). Results showed that these powders contained different amounts and sizes of porous inclusions when sintered. How this affects the functional performance of the PZT 95/5 material is the subject of future investigations.
Nano Letters
This paper reports the preparation of cubically ordered, self-assembled nanostructural crystals on micropatterned surfaces. Large ordered arrays of octahedral crystals were formed on substrates with triangular-shaped micropatterns that match the shape of the {111} surface morphology of the crystals. Many crystals became self-aligned in X, Y, and Z orientations through the interaction with the matching micropatterns. However, line micropatterns did not produce such well-defined crystals and crystal alignment. This work is among the first examples to show 3D crystal alignment independent of the long rodlike micellar structure that is characteristic of the hexagonal phases. Significantly, it also suggests that the geometry of the underline patterns has a large effect on the crystal morphology and orientation. We hope that these results will be helpful in developing microdevices based on self-assembled nanoscale materials.
Proposed for publication in JACS or Nature Materials.
Abstract not provided.