Publications

Results 76–89 of 89
Skip to search filters

J-Integral modeling and validation for GTS reservoirs

Nibur, Kevin A.; Somerday, Brian P.; Brown, Arthur B.; Lindblad, Alex L.; Ohashi, Yuki O.; Antoun, Bonnie R.; Connelly, Kevin C.; Zimmerman, Jonathan A.; Margolis, Stephen B.

Non-destructive detection methods can reliably certify that gas transfer system (GTS) reservoirs do not have cracks larger than 5%-10% of the wall thickness. To determine the acceptability of a reservoir design, analysis must show that short cracks will not adversely affect the reservoir behavior. This is commonly done via calculation of the J-Integral, which represents the energetic driving force acting to propagate an existing crack in a continuous medium. J is then compared against a material's fracture toughness (J{sub c}) to determine whether crack propagation will occur. While the quantification of the J-Integral is well established for long cracks, its validity for short cracks is uncertain. This report presents the results from a Sandia National Laboratories project to evaluate a methodology for performing J-Integral evaluations in conjunction with its finite element analysis capabilities. Simulations were performed to verify the operation of a post-processing code (J3D) and to assess the accuracy of this code and our analysis tools against companion fracture experiments for 2- and 3-dimensional geometry specimens. Evaluation is done for specimens composed of 21-6-9 stainless steel, some of which were exposed to a hydrogen environment, for both long and short cracks.

More Details

Interface delamination fracture toughness experiments at various loading rates

Society for Experimental Mechanics - 11th International Congress and Exhibition on Experimental and Applied Mechanics 2008

Lu, Wei-Yang L.; Antoun, Bonnie R.; Brown, Arthur B.; Chen, Weinong; Song, Bo

Mode-I and Mode-ll fracture experiments of composites under high loading rates are presented. In the standard double cantilever beam (DCB) configuration, specimens are loaded with constant speed of 2.5 m/s (100 in/s) on a customized high-rate MTS system. Alternative high rate experiments are also performed on a modified split Hopkinson pressure bar (SHPB). One of the configurations for the characterization of dynamic Mode-I interfacial delamination is to place a wedge-loaded compact-tension (WLCT) specimen in the test section. Pulse-shaping techniques are employed to control the profiles of the loading pulses such that the crack tip is loaded at constant loading rates. Pulse shaping also avoids the excitation of resonance, thus avoiding inertia induced forces mixed with material strength in the data. To create Mode-ll fracture conditions, an (ENF) three-point bending specimen is employed in the gage section of the modified SHPB. © 2008 Society for Experimental Mechanics Inc.

More Details

ASC-AD penetration modeling FY05 status report

Chiesa, Michael L.; Settgast, Randolph R.; Kistler, Bruce L.; Bhutani, Nipun B.; Ohashi, Yuki O.; Ostien, Jakob O.; Antoun, Bonnie R.; Korellis, John S.; Marin, Esteban B.

Sandia currently lacks a high fidelity method for predicting loads on and subsequent structural response of earth penetrating weapons. This project seeks to test, debug, improve and validate methodologies for modeling earth penetration. Results of this project will allow us to optimize and certify designs for the B61-11, Robust Nuclear Earth Penetrator (RNEP), PEN-X and future nuclear and conventional penetrator systems. Since this is an ASC Advanced Deployment project the primary goal of the work is to test, debug, verify and validate new Sierra (and Nevada) tools. Also, since this project is part of the V&V program within ASC, uncertainty quantification (UQ), optimization using DAKOTA [1] and sensitivity analysis are an integral part of the work. This project evaluates, verifies and validates new constitutive models, penetration methodologies and Sierra/Nevada codes. In FY05 the project focused mostly on PRESTO [2] using the Spherical Cavity Expansion (SCE) [3,4] and PRESTO Lagrangian analysis with a preformed hole (Pen-X) methodologies. Modeling penetration tests using PRESTO with a pilot hole was also attempted to evaluate constitutive models. Future years work would include the Alegra/SHISM [5] and AlegrdEP (Earth Penetration) methodologies when they are ready for validation testing. Constitutive models such as Soil-and-Foam, the Sandia Geomodel [6], and the K&C Concrete model [7] were also tested and evaluated. This report is submitted to satisfy annual documentation requirements for the ASC Advanced Deployment program. This report summarizes FY05 work performed in the Penetration Mechanical Response (ASC-APPS) and Penetration Mechanics (ASC-V&V) projects. A single report is written to document the two projects because of the significant amount of technical overlap.

More Details

Temperature effects on the mechanical properties of annealed and HERF 304L stainless steel

Antoun, Bonnie R.

The effect of temperature on the tensile properties of annealed 304L stainless steel and HERF 304L stainless steel forgings was determined by completing experiments over the moderate range of -40 F to 160 F. Temperature effects were more significant in the annealed material than the HERF material. The tensile yield strength of the annealed material at -40 F averaged twenty two percent above the room temperature value and at 160 F averaged thirteen percent below. The tensile yield strength for the three different geometry HERF forgings at -40 F and 160 F changed less than ten percent from room temperature. The ultimate tensile strength was more temperature dependent than the yield strength. The annealed material averaged thirty six percent above and fourteen percent below the room temperature ultimate strength at -40 F and 160 F, respectively. The HERF forgings exhibited similar, slightly lower changes in ultimate strength with temperature. For completeness and illustrative purposes, the stress-strain curves are included for each of the tensile experiments conducted. The results of this study prompted a continuation study to determine tensile property changes of welded 304L stainless steel material with temperature, documented separately.

More Details

Analytical impact models and experimental test validation for the Columbia shuttle wing leading edge panels

Gwinn, Kenneth W.; Lu, Wei-Yang L.; Antoun, Bonnie R.; Metzinger, Kurt E.; Korellis, John S.

This paper describes the analyses and the experimental mechanics program to support the National Aeronautics and Space Administration (NASA) investigation of the Shuttle Columbia accident. A synergism of the analysis and experimental effort is required to insure that the final analysis is valid - the experimental program provides both the material behavior and a basis for validation, while the analysis is required to insure the experimental effort provides behavior in the correct loading regime. Preliminary scoping calculations of foam impact onto the Shuttle Columbia's wing leading edge determined if enough energy was available to damage the leading edge panel. These analyses also determined the strain-rate regimes for various materials to provide the material test conditions. Experimental testing of the reinforced carbon-carbon wing panels then proceeded to provide the material behavior in a variety of configurations and strain-rates for flown or conditioned samples of the material. After determination of the important failure mechanisms of the material, validation experiments were designed to provide a basis of comparison for the analytical effort. Using this basis, the final analyses were used for test configuration, instrumentation location, and calibration definition in support of full-scale testing of the panels in June 2003. These tests subsequently confirmed the accident cause.

More Details

High fidelity frictional models for MEMS

Reedy, Earl D.; De Boer, Maarten P.; Corwin, Alex D.; Starr, Michael J.; Bitsie, Fernando; Sumali, Hartono S.; Redmond, James M.; Jones, Reese E.; Antoun, Bonnie R.

The primary goals of the present study are to: (1) determine how and why MEMS-scale friction differs from friction on the macro-scale, and (2) to begin to develop a capability to perform finite element simulations of MEMS materials and components that accurately predicts response in the presence of adhesion and friction. Regarding the first goal, a newly developed nanotractor actuator was used to measure friction between molecular monolayer-coated, polysilicon surfaces. Amontons law does indeed apply over a wide range of forces. However, at low loads, which are of relevance to MEMS, there is an important adhesive contribution to the normal load that cannot be neglected. More importantly, we found that at short sliding distances, the concept of a coefficient of friction is not relevant; rather, one must invoke the notion of 'pre-sliding tangential deflections' (PSTD). Results of a simple 2-D model suggests that PSTD is a cascade of small-scale slips with a roughly constant number of contacts equilibrating the applied normal load. Regarding the second goal, an Adhesion Model and a Junction Model have been implemented in PRESTO, Sandia's transient dynamics, finite element code to enable asperity-level simulations. The Junction Model includes a tangential shear traction that opposes the relative tangential motion of contacting surfaces. An atomic force microscope (AFM)-based method was used to measure nano-scale, single asperity friction forces as a function of normal force. This data is used to determine Junction Model parameters. An illustrative simulation demonstrates the use of the Junction Model in conjunction with a mesh generated directly from an atomic force microscope (AFM) image to directly predict frictional response of a sliding asperity. Also with regards to the second goal, grid-level, homogenized models were studied. One would like to perform a finite element analysis of a MEMS component assuming nominally flat surfaces and to include the effect of roughness in such an analysis by using a homogenized contact and friction models. AFM measurements were made to determine statistical information on polysilicon surfaces with different roughnesses, and this data was used as input to a homogenized, multi-asperity contact model (the classical Greenwood and Williamson model). Extensions of the Greenwood and Williamson model are also discussed: one incorporates the effect of adhesion while the other modifies the theory so that it applies to the case of relatively few contacting asperities.

More Details
Results 76–89 of 89
Results 76–89 of 89