Energy Dissipation and Frequency Analyses in Threaded Joints using Kolsky Bar Techniques
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
European Physical Journal: Special Topics
We modified the design originally developed by Kuokkala's group to develop an automated high-temperature Kolsky compression bar for characterizing high-rate properties of 304L stainless steel at elevated temperatures. Additional features have been implemented to this high-temperature Kolsky compression bar for recrystallization investigation. The new features ensure a single loading on the specimen and precise time and temperature control for quenching to the specimen after dynamic loading. Dynamic compressive stress-strain curves of 304L stainless steel were obtained at 21, 204, 427, 649, and 871 °C (or 70, 400, 800, 1200, and 1600 °F) at the same constant strain rate of 332 s -1. The specimen subjected to specific time and temperature control for quenching after a single dynamic loading was preserved for investigating microstructure recrystallization. © 2012 EDP Sciences and Springer.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Conference Proceedings of the Society for Experimental Mechanics Series
Abstract not provided.
Society for Experimental Mechanics - SEM Annual Conference and Exposition on Experimental and Applied Mechanics 2010
Abstract not provided.
Society for Experimental Mechanics - SEM Annual Conference and Exposition on Experimental and Applied Mechanics 2010
Abstract not provided.
Abstract not provided.
Many ballistic fibers have been developed and utilized in soft body armors for military and law enforcement personnel. However, it is complex and challenging to evaluate the performance of ballistic resistance for the ballistic fibers. In applications, the fibers are subjected to high speed transverse impact by external objects. It is thus desirable to understand the dynamic response of the fibers under transverse impact. Transverse wave speed has been recognized a critical parameter for ballistic-resistant performance because a faster transverse wave speed dissipates the external impact energy more quickly. In this study, we employed split Hopkinson pressure bar (SHPB) and gas gun to conduct high-speed impact on a Kevlar fiber bundle in the transverse direction at different velocities. The deformation of the fiber bundle was photographed with high-speed digital cameras. Additional sensitive transducers were employed to provide more quantitative information of the fiber response during such a transverse impact. The experimental results were used for quantitative verification of current analytical models.
Abstract not provided.
Abstract not provided.
There has been increasing demand to understand the stress-strain response as well as damage and failure mechanisms of materials under impact loading condition. Dynamic tensile characterization has been an efficient approach to acquire satisfactory information of mechanical properties including damage and failure of the materials under investigation. However, in order to obtain valid experimental data, reliable tensile experimental techniques at high strain rates are required. This includes not only precise experimental apparatus but also reliable experimental procedures and comprehensive data interpretation. Kolsky bar, originally developed by Kolsky in 1949 [1] for high-rate compressive characterization of materials, has been extended for dynamic tensile testing since 1960 [2]. In comparison to Kolsky compression bar, the experimental design of Kolsky tension bar has been much more diversified, particularly in producing high speed tensile pulses in the bars. Moreover, instead of directly sandwiching the cylindrical specimen between the bars in Kolsky bar compression bar experiments, the specimen must be firmly attached to the bar ends in Kolsky tensile bar experiments. A common method is to thread a dumbbell specimen into the ends of the incident and transmission bars. The relatively complicated striking and specimen gripping systems in Kolsky tension bar techniques often lead to disturbance in stress wave propagation in the bars, requiring appropriate interpretation of experimental data. In this study, we employed a modified Kolsky tension bar, newly developed at Sandia National Laboratories, Livermore, CA, to explore the dynamic tensile response of a 4330-V steel. The design of the new Kolsky tension bar has been presented at 2010 SEM Annual Conference [3]. Figures 1 and 2 show the actual photograph and schematic of the Kolsky tension bar, respectively. As shown in Fig. 2, the gun barrel is directly connected to the incident bar with a coupler. The cylindrical striker set inside the gun barrel is launched to impact on the end cap that is threaded into the open end of the gun barrel, producing a tension on the gun barrel and the incident bar.