Energy Dissipation and Frequency Analyses in Threaded Joints using Kolsky Bar Techniques
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
European Physical Journal: Special Topics
We modified the design originally developed by Kuokkala's group to develop an automated high-temperature Kolsky compression bar for characterizing high-rate properties of 304L stainless steel at elevated temperatures. Additional features have been implemented to this high-temperature Kolsky compression bar for recrystallization investigation. The new features ensure a single loading on the specimen and precise time and temperature control for quenching to the specimen after dynamic loading. Dynamic compressive stress-strain curves of 304L stainless steel were obtained at 21, 204, 427, 649, and 871 °C (or 70, 400, 800, 1200, and 1600 °F) at the same constant strain rate of 332 s -1. The specimen subjected to specific time and temperature control for quenching after a single dynamic loading was preserved for investigating microstructure recrystallization. © 2012 EDP Sciences and Springer.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Conference Proceedings of the Society for Experimental Mechanics Series
Abstract not provided.
Society for Experimental Mechanics - SEM Annual Conference and Exposition on Experimental and Applied Mechanics 2010
Abstract not provided.
Society for Experimental Mechanics - SEM Annual Conference and Exposition on Experimental and Applied Mechanics 2010
Abstract not provided.
Abstract not provided.
Many ballistic fibers have been developed and utilized in soft body armors for military and law enforcement personnel. However, it is complex and challenging to evaluate the performance of ballistic resistance for the ballistic fibers. In applications, the fibers are subjected to high speed transverse impact by external objects. It is thus desirable to understand the dynamic response of the fibers under transverse impact. Transverse wave speed has been recognized a critical parameter for ballistic-resistant performance because a faster transverse wave speed dissipates the external impact energy more quickly. In this study, we employed split Hopkinson pressure bar (SHPB) and gas gun to conduct high-speed impact on a Kevlar fiber bundle in the transverse direction at different velocities. The deformation of the fiber bundle was photographed with high-speed digital cameras. Additional sensitive transducers were employed to provide more quantitative information of the fiber response during such a transverse impact. The experimental results were used for quantitative verification of current analytical models.
Abstract not provided.
Abstract not provided.
There has been increasing demand to understand the stress-strain response as well as damage and failure mechanisms of materials under impact loading condition. Dynamic tensile characterization has been an efficient approach to acquire satisfactory information of mechanical properties including damage and failure of the materials under investigation. However, in order to obtain valid experimental data, reliable tensile experimental techniques at high strain rates are required. This includes not only precise experimental apparatus but also reliable experimental procedures and comprehensive data interpretation. Kolsky bar, originally developed by Kolsky in 1949 [1] for high-rate compressive characterization of materials, has been extended for dynamic tensile testing since 1960 [2]. In comparison to Kolsky compression bar, the experimental design of Kolsky tension bar has been much more diversified, particularly in producing high speed tensile pulses in the bars. Moreover, instead of directly sandwiching the cylindrical specimen between the bars in Kolsky bar compression bar experiments, the specimen must be firmly attached to the bar ends in Kolsky tensile bar experiments. A common method is to thread a dumbbell specimen into the ends of the incident and transmission bars. The relatively complicated striking and specimen gripping systems in Kolsky tension bar techniques often lead to disturbance in stress wave propagation in the bars, requiring appropriate interpretation of experimental data. In this study, we employed a modified Kolsky tension bar, newly developed at Sandia National Laboratories, Livermore, CA, to explore the dynamic tensile response of a 4330-V steel. The design of the new Kolsky tension bar has been presented at 2010 SEM Annual Conference [3]. Figures 1 and 2 show the actual photograph and schematic of the Kolsky tension bar, respectively. As shown in Fig. 2, the gun barrel is directly connected to the incident bar with a coupler. The cylindrical striker set inside the gun barrel is launched to impact on the end cap that is threaded into the open end of the gun barrel, producing a tension on the gun barrel and the incident bar.
Abstract not provided.
Measurement Science and Technology
Abstract not provided.
Experimental Mechanics
Abstract not provided.
SENSORS AND ACTUATORS
Abstract not provided.
Composite materials, particularly fiber reinforced plastic composites, have been extensively utilized in many military and industrial applications. As an important structural component in these applications, the composites are often subjected to external impact loading. It is desirable to understand the mechanical response of the composites under impact loading for performance evaluation in the applications. Even though many material models for the composites have been developed, experimental investigation is still needed to validate and verify the models. It is essential to investigate the intrinsic material response. However, it becomes more applicable to determine the structural response of composites, such as a composite beam. The composites are usually subjected to out-of-plane loading in applications. When a composite beam is subjected to a sudden transverse impact, two different kinds of stress waves, longitudinal and transverse waves, are generated and propagate in the beam. The longitudinal stress wave propagates through the thickness direction; whereas, the propagation of the transverse stress wave is in-plane directions. The longitudinal stress wave speed is usually considered as a material constant determined by the material density and Young's modulus, regardless of the loading rate. By contrast, the transverse wave speed is related to structural parameters. In ballistic mechanics, the transverse wave plays a key role to absorb external impact energy [1]. The faster the transverse wave speed, the more impact energy dissipated. Since the transverse wave speed is not a material constant, it is not possible to be calculated from stress-wave theory. One can place several transducers to track the transverse wave propagation. An alternative but more efficient method is to apply digital image correlation (DIC) to visualize the transverse wave propagation. In this study, we applied three-pointbending (TPB) technique to Kolsky compression bar to facilitate dynamic transverse loading on a glass fiber/epoxy composite beam. The high-speed DIC technique was employed to study the transverse wave propagation.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The mechanical properties of some materials (Cu, Ni, Ag, etc.) have been shown to develop strong dependence on the geometric dimensions, resulting in a size effect. Several theories have been proposed to model size effects, but have been based on very few experiments conducted at appropriate scales. Some experimental results implied that size effects are caused by increasing strain gradients and have been used to confirm many strain gradient theories. On the other hand, some recent experiments show that a size effect exists in the absence of strain gradients. This report describes a brief analytical and experimental study trying to clarify the material and experimental issues surrounding the most influential size-effect experiments by Fleck et al (1994). This effort is to understand size effects intended to further develop predictive models.
Journal of Materials Science
Abstract not provided.
Abstract not provided.