Publications

Results 101–124 of 124
Skip to search filters

Fast neutron environments

Hattar, Khalid M.; Puskar, J.D.; Doyle, Barney L.; Boyce, Brad B.; Buchheit, Thomas E.; Foiles, Stephen M.; Lu, Ping L.; Clark, Blythe C.; Kotula, Paul G.; Goods, Steven H.

The goal of this LDRD project is to develop a rapid first-order experimental procedure for the testing of advanced cladding materials that may be considered for generation IV nuclear reactors. In order to investigate this, a technique was developed to expose the coupons of potential materials to high displacement damage at elevated temperatures to simulate the neutron environment expected in Generation IV reactors. This was completed through a high temperature high-energy heavy-ion implantation. The mechanical properties of the ion irradiated region were tested by either micropillar compression or nanoindentation to determine the local properties, as a function of the implantation dose and exposure temperature. In order to directly compare the microstructural evolution and property degradation from the accelerated testing and classical neutron testing, 316L, 409, and 420 stainless steels were tested. In addition, two sets of diffusion couples from 316L and HT9 stainless steels with various refractory metals. This study has shown that if the ion irradiation size scale is taken into consideration when developing and analyzing the mechanical property data, significant insight into the structural properties of the potential cladding materials can be gained in about a week.

More Details

Nanomechanics and nanometallurgy of boundaries

Boyce, Brad B.; Clark, Blythe C.; Foiles, Stephen M.; Hattar, Khalid M.; Holm, Elizabeth A.; Knapp, J.A.

One of the tenets of nanotechnology is that the electrical/optical/chemical/biological properties of a material may be changed profoundly when the material is reduced to sufficiently small dimensions - and we can exploit these new properties to achieve novel or greatly improved material's performance. However, there may be mechanical or thermodynamic driving forces that hinder the synthesis of the structure, impair the stability of the structure, or reduce the intended performance of the structure. Examples of these phenomena include de-wetting of films due to high surface tension, thermally-driven instability of nano-grain structure, and defect-related internal dissipation. If we have fundamental knowledge of the mechanical processes at small length scales, we can exploit these new properties to achieve robust nanodevices. To state it simply, the goal of this program is the fundamental understanding of the mechanical properties of materials at small length scales. The research embodied by this program lies at the heart of modern materials science with a guiding focus on structure-property relationships. We have divided this program into three Tasks, which are summarized: (1) Mechanics of Nanostructured Materials (PI Blythe Clark). This task aims to develop a fundamental understanding of the mechanical properties and thermal stability of nanostructured metals, and of the relationship between nano/microstructure and bulk mechanical behavior through a combination of special materials synthesis methods, nanoindentation coupled with finite-element modeling, detailed electron microscopic characterization, and in-situ transmission electron microscopy experiments. (2) Theory of Microstructures and Ensemble Controlled Deformation (PI Elizabeth A. Holm). The goal of this Task is to combine experiment, modeling, and simulation to construct, analyze, and utilize three-dimensional (3D) polycrystalline nanostructures. These full 3D models are critical for elucidating the complete structural geometry, topology, and arrangements that control experimentally-observed phenomena, such as abnormal grain growth, grain rotation, and internal dissipation measured in nanocrystalline metal. (3) Mechanics and Dynamics of Nanostructured and Nanoscale Materials (PI John P. Sullivan). The objective of this Task is to develop atomic-scale understanding of dynamic processes including internal dissipation in nanoscale and nanostructured metals, and phonon transport and boundary scattering in nanoscale structures via internal friction measurements.

More Details

Influence of orientation on the size effect in BCC pillars with different critical temperatures

Proposed for publication in Materials Science and Engineering A.

Clark, Blythe C.

The size effect in body-centered cubic metals is comprehensively investigated through micro/nano-compression tests performed on focused ion beam machined tungsten (W), molybdenum (Mo) and niobium (Nb) pillars, with single slip [2 3 5] and multiple slip [0 0 1] orientations. The results demonstrate that the stress-strain response is unaffected by the number of activated slip systems, indicating that dislocation-dislocation interaction is not a dominant mechanism for the observed diameter dependent yield strength and strain hardening. Furthermore, the limited mobility of screw dislocations, which is different for each material at ambient temperature, acts as an additional strengthening mechanism leading to a material dependent size effect. Nominal values and diameter dependence of the flow stress significantly deviate from studies on face-centered cubic metals. This is demonstrated by the correlation of size dependence with the material specific critical temperature. Activation volumes were found to decrease with decreasing pillar diameter further indicating that the influence of the screw dislocations decreases with smaller pillar diameter.

More Details

In situ TEM straining of nanograined free-standing thin films reveals various unexpected deformation mechanisms

Clark, Blythe C.; Knapp, J.A.

In-situ transmission electron microscopy (TEM) straining experiments provide direct detailed observation of the deformation and failure mechanisms active at a length scale relevant to nanomaterials. This presentation will detail continued investigations into the active mechanisms governing high purity nanograined pulsed-laser deposited (PLD) nickel, as well as recent work into dislocation-particle interactions in nanostructured PLD aluminum-alumina alloys. Straining experiments performed on nanograined PLD free-standing nanograined Ni films with an engineered grain size distribution revealed that the addition of ductility with limited decrease in strength, reported in such metals, can be attributed to the simultaneous activity of three deformation mechanisms in front of the crack tip. At the crack tip, a grain agglomeration mechanism occurs where several nanograins appear to rotate, resulting in a very thin, larger grain immediately prior to failure. In the classical plastic zone in front of the crack tip, a multitude of mechanisms were found to operate in the larger grains including: dislocation pile-up, twinning, and stress-assisted grain growth. The region outside of the plastic zone showed signs of elasticity with limited indications of dislocation activity. The insight gained from in-situ TEM straining experiments of nanograined PLD Ni provides feedback for models of the deformation and failure in nanograined FCC metals, and suggests a greater complexity in the active mechanisms. The investigation into the deformation and failure mechanisms of FCC metals via in-situ TEM straining experiments has been expanded to the effect of hard particles on the active mechanisms in nanograined aluminum with alumina particles. The microstructures investigated were developed with varying composition, grain size, and particle distribution via tailoring of the PLD conditions and subsequent annealing. In order to develop microstructures suitable for in-situ deformation testing, in-situ TEM annealing experiments were performed, revealing the effect of nanoparticle precipitates on grain growth. These films were then strained in the TEM and the resulting microstructural evolution will be discussed. In-situ TEM straining experiments currently provide a wealth of information into plasticity within nanomaterials and can potentially, with further development of TEM and nanofabrication tools, provide even greater investigative capabilities.

More Details
Results 101–124 of 124
Results 101–124 of 124