Publications

Results 51–75 of 124
Skip to search filters

Draft of M2 Report on Integration of the Hybrid Hydride Model into INL's MBM Framework for Review

Tikare, Veena T.; Weck, Philippe F.; Schultz, Peter A.; Clark, Blythe C.

This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride {delta}-ZrH{sub 1.5} precipitation in the cladding of used nuclear fuels that may occur during long-term dry storage. While the Zr-based claddings are manufactured free of any hydrogen, they absorb hydrogen during service, in the reactor by a process commonly termed ‘hydrogen pick-up’. The precipitation and growth of zirconium hydrides during dry storage is one of the most likely fuel rod integrity failure mechanisms either by embrittlement or delayed hydride cracking of the cladding. While the phenomenon is well documented and identified as a potential key failure mechanism during long-term dry storage (NUREG/CR-7116), the ability to actually predict the formation of hydrides is poor. The model being documented in this work is a computational capability for the prediction of hydride formation in different claddings of used nuclear fuels. This work supports the Used Fuel Disposition Research and Development Campaign in assessing the structural engineering performance of the cladding during and after long-term dry storage. This document demonstrates a basic hydride precipitation model that is built on a recently developed hybrid Potts-phase field model that combines elements of Potts-Monte Carlo and the phase-field models. The model capabilities are demonstrated along with the incorporation of the starting microstructure, thermodynamics of the Zr-H system and the hydride formation mechanism.

More Details

An experimental statistical analysis of stress projection factors in BCC tantalum

Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing

Carroll, Jay D.; Clark, Blythe C.; Buchheit, Thomas E.; Boyce, Brad B.; Weinberger, Christopher R.

Crystallographic slip planes in body centered cubic (BCC) metals are not fully understood. In polycrystals, there are additional confounding effects from grain interactions. This paper describes an experimental investigation into the effects of grain orientation and neighbors on elastic–plastic strain accumulation. In situ strain fields were obtained by performing digital image correlation (DIC) on images from a scanning electron microscope (SEM) and from optical microscopy. These strain fields were statistically compared to the grain structure measured by electron backscatter diffraction (EBSD). Spearman rank correlations were performed between effective strain and six microstructural factors including four Schmid factors associated with the <111> slip direction, grain size, and Taylor factor. Modest correlations (~10%) were found for a polycrystal tension specimen. The influence of grain neighbors was first investigated by re-correlating the polycrystal data using clusters of similarly-oriented grains identified by low grain boundary misorientation angles. Second, the experiment was repeated on a tantalum oligocrystal, with through-thickness grains. Much larger correlation coefficients were found in this multicrystal due to the dearth of grain neighbors and subsurface microstructure. Finally, a slip trace analysis indicated (in agreement with statistical correlations) that macroscopic slip often occurs on {110}<111> slip systems and sometimes by pencil glide on maximum resolved shear stress planes (MRSSP). These results suggest that Schmid factors are suitable for room temperature, quasistatic, tensile deformation in tantalum as long as grain neighbor effects are accounted for.

More Details

Final LDRD report :

Clark, Blythe C.

We present the results of a three-year LDRD project focused on understanding microstructural evolution and related property changes in Zr-based nuclear cladding materials towards the development of high fidelity predictive simulations for long term dry storage. Experiments and modeling efforts have focused on the effects of hydride formation and accumulation of irradiation defects. Key results include: determination of the influence of composition and defect structures on hydride formation; measurement of the electrochemical property differences between hydride and parent material for understanding and predicting corrosion resistance; in situ environmental transmission electron microscope observation of hydride formation; development of a predictive simulation for mechanical property changes as a function of irradiation dose; novel test method development for microtensile testing of ionirradiated material to simulate the effect of neutron irradiation on mechanical properties; and successful demonstration of an Idaho National Labs-based sample preparation and shipping method for subsequent Sandia-based analysis of post-reactor cladding.

More Details
Results 51–75 of 124
Results 51–75 of 124