Publications

Results 51–100 of 124
Skip to search filters

Draft of M2 Report on Integration of the Hybrid Hydride Model into INL's MBM Framework for Review

Tikare, Veena T.; Weck, Philippe F.; Schultz, Peter A.; Clark, Blythe C.

This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride {delta}-ZrH{sub 1.5} precipitation in the cladding of used nuclear fuels that may occur during long-term dry storage. While the Zr-based claddings are manufactured free of any hydrogen, they absorb hydrogen during service, in the reactor by a process commonly termed ‘hydrogen pick-up’. The precipitation and growth of zirconium hydrides during dry storage is one of the most likely fuel rod integrity failure mechanisms either by embrittlement or delayed hydride cracking of the cladding. While the phenomenon is well documented and identified as a potential key failure mechanism during long-term dry storage (NUREG/CR-7116), the ability to actually predict the formation of hydrides is poor. The model being documented in this work is a computational capability for the prediction of hydride formation in different claddings of used nuclear fuels. This work supports the Used Fuel Disposition Research and Development Campaign in assessing the structural engineering performance of the cladding during and after long-term dry storage. This document demonstrates a basic hydride precipitation model that is built on a recently developed hybrid Potts-phase field model that combines elements of Potts-Monte Carlo and the phase-field models. The model capabilities are demonstrated along with the incorporation of the starting microstructure, thermodynamics of the Zr-H system and the hydride formation mechanism.

More Details

An experimental statistical analysis of stress projection factors in BCC tantalum

Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing

Carroll, Jay D.; Clark, Blythe C.; Buchheit, Thomas E.; Boyce, Brad B.; Weinberger, Christopher R.

Crystallographic slip planes in body centered cubic (BCC) metals are not fully understood. In polycrystals, there are additional confounding effects from grain interactions. This paper describes an experimental investigation into the effects of grain orientation and neighbors on elastic–plastic strain accumulation. In situ strain fields were obtained by performing digital image correlation (DIC) on images from a scanning electron microscope (SEM) and from optical microscopy. These strain fields were statistically compared to the grain structure measured by electron backscatter diffraction (EBSD). Spearman rank correlations were performed between effective strain and six microstructural factors including four Schmid factors associated with the <111> slip direction, grain size, and Taylor factor. Modest correlations (~10%) were found for a polycrystal tension specimen. The influence of grain neighbors was first investigated by re-correlating the polycrystal data using clusters of similarly-oriented grains identified by low grain boundary misorientation angles. Second, the experiment was repeated on a tantalum oligocrystal, with through-thickness grains. Much larger correlation coefficients were found in this multicrystal due to the dearth of grain neighbors and subsurface microstructure. Finally, a slip trace analysis indicated (in agreement with statistical correlations) that macroscopic slip often occurs on {110}<111> slip systems and sometimes by pencil glide on maximum resolved shear stress planes (MRSSP). These results suggest that Schmid factors are suitable for room temperature, quasistatic, tensile deformation in tantalum as long as grain neighbor effects are accounted for.

More Details

Final LDRD report :

Clark, Blythe C.

We present the results of a three-year LDRD project focused on understanding microstructural evolution and related property changes in Zr-based nuclear cladding materials towards the development of high fidelity predictive simulations for long term dry storage. Experiments and modeling efforts have focused on the effects of hydride formation and accumulation of irradiation defects. Key results include: determination of the influence of composition and defect structures on hydride formation; measurement of the electrochemical property differences between hydride and parent material for understanding and predicting corrosion resistance; in situ environmental transmission electron microscope observation of hydride formation; development of a predictive simulation for mechanical property changes as a function of irradiation dose; novel test method development for microtensile testing of ionirradiated material to simulate the effect of neutron irradiation on mechanical properties; and successful demonstration of an Idaho National Labs-based sample preparation and shipping method for subsequent Sandia-based analysis of post-reactor cladding.

More Details

In situ TEM ion irradiation and atmospheric heating of cladding materials

Materials Research Society Symposium Proceedings

Hattar, K.; Rajasekhara, Shreyas R.; Clark, Blythe C.

Over the course of use, both in-service and during storage, fuel claddings for nuclear reactors undergo complex changes that can drastically change their material properties. Exposures to irradiation, temperature changes, and stresses, as well as contact with coolant, storage pool, and dry storage environments, may induce microstructural changes, such as formation of radiation defects, precipitate dissolution, and chemical segregation, that can ultimately result in failure of the cladding if pushed beyond its limit. In order to predict the performance of cladding in-service and during storage, understanding of the dominant processes related to these changes and their consequences is essential. In situ transmission electron microscopy (TEM) allows dynamic observation, at the nanoscale, of microstructural changes under a range of stimuli, making it an excellent tool for deepening our understanding of microstructural evolution in claddings. This proceeding presents details of the new in situ ion irradiation TEM and in situ gas cell TEM capabilities developed at Sandia National Laboratories. In addition, it will present the initial results from both systems investigating radiation tolerance of potential Generation IV cladding materials and understanding degradation mechanisms in Zr-based claddings of importance for dry storage. © 2012 Materials Research Society.

More Details

The hardness and strength of metal tribofilms: An apparent contradiction between nanoindentation and pillar compression

Acta Materialia

Battaile, Corbett C.; Boyce, Brad L.; Weinberger, Christopher R.; Prasad, Somuri V.; Michael, Joseph R.; Clark, Blythe C.

After sliding contact of a hard spherical counterface on a metal surface, the resulting wear scar possesses a complex microstructure consisting of dislocations, dislocation cells, ultrafine or nanocrystalline grains, and material that has undergone dynamic recovery. There remains a controversy as to the mechanical properties of the tribolayer formed in this wear scar. To investigate the properties of this thin layer of damaged material in single crystal nickel, we employed two complementary techniques: pillar compression and nanoindentation. In both techniques, the tests were tailored to characterize the near surface properties associated with the top 500 nm of material, where the wear-induced damage was most extensive. Pillar compression indicated that the worn material was substantially softer than neighboring unworn base metal. However, nanoindentation showed that the wear track was substantially harder than the base metal. These apparently contradictory results are explained on the basis of source limited deformation. The worn pillars are softer than unworn pillars due to a pre-straining effect: undefected pillars are nearly free of dislocations, whereas worn pillars have pre-existing dislocations built in. Nanoindentation in worn material behaves harder than unworn single crystal nickel due to source length reduction from the fine-grained wear structure. © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

More Details
Results 51–100 of 124
Results 51–100 of 124