Publications

Results 51–69 of 69
Skip to search filters

Vibrational spectra of methane clathrate hydrates from molecular dynamics simulation

Journal of Physical Chemistry B

Greathouse, Jeffery A.; Cygan, Randall T.; Simmons, Blake S.

Molecular dynamics simulations were performed on methane clathrate hydrates at ambient conditions. Thermal expansion results over the temperature range 60-300 K show that the unit cell volume increases with temperature in agreement with experiment. Power spectra were obtained at 273 K from velocity autocorrelation functions for selected atoms, and normal modes were assigned. The spectra were further classified according to individual atom types, allowing the assignment of contributions from methane molecules located in small and large cages within the structure I unit cell. The symmetric C-H stretch of methane in the small cages occurs at a higher frequency than for methane located in the large cages, with a peak separation of 14 cm-1. Additionally, we determined that the symmetric C-H stretch in methane gas occurs at the same frequency as methane in the large cages. Results of molecular dynamics simulations indicate the use of power spectra obtained from the velocity autocorrelation function is a reliable method to investigate the vibrational behavior of guest molecules in clathrate hydrates. © 2006 American Chemical Society.

More Details

A bioparticle detector and enrichment platform using integrated insulator-based dielectrophoresis and bioimpedance measurements

Micro Total Analysis Systems - Proceedings of MicroTAS 2006 Conference: 10th International Conference on Miniaturized Systems for Chemistry and Life Sciences

Ponce, Pierre P.; Simmons, Blake S.; Khine, Michelle; Davalos, Rafael V.

We have developed a bioparticle detection platform which combines insulatorbased dielectrophoretic (iDEP) concentration with impedance feedback. The system continuously and selectively accumulates particles while electrical responses of the suspension at the trapping site are recorded. The operating conditions for trapping are determined by the physical and electrical properties of the target particle type. Recordings of phase offset, relative to the reference sensing signal, act as the principal monitoring indicators. These measurements enable us to detect the presence and the approximate concentration of biological contaminants in a sample. This study is the first to illustrate the potential of iDEP concentration in conjunction with impedance measurements. The results obtained from fluorescent beads and viable B. subtilis spores demonstrate the feasibility of using iDEP concentration with active impedance monitoring to detect biological pathogens collected from dilute samples. © 2006 Society for Chemistry and Micro-Nano Systems.

More Details

Bio micro fuel cell grand challenge final report

Apblett, Christopher A.; Novak, James L.; Hudgens, James J.; Podgorski, Jason R.; Brozik, Susan M.; Flemming, Jeb H.; Ingersoll, David I.; Eisenbies, Stephen E.; Shul, Randy J.; Cornelius, Christopher J.; Fujimoto, Cy F.; Schubert, William K.; Hickner, Michael A.; Volponi, Joanne V.; Kelley, Michael J.; Zavadil, Kevin R.; Staiger, Chad S.; Dolan, Patricia L.; Harper, Jason C.; Doughty, Daniel H.; Casalnuovo, Stephen A.; Kelley, John B.; Simmons, Blake S.; Borek, Theodore T.; Meserole, Stephen M.; Alam, Todd M.; Cherry, Brian B.; Roberts, Greg

Abstract not provided.

Fabrication and characterization of polymer microfluidic devices for BioAgent detection

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Morales, Alfredo M.; Brazzle, John D.; Crocker, Robert W.; Domeier, Linda A.; Goods, Eric B.; Hachman, John T.; Harnett, Cindy K.; Hunter, Marion C.; Mani, Seethambal S.; Mosier, Bruce P.; Simmons, Blake S.

Sandia and Lawrence Livermore National Laboratories are developing a briefcase-sized, broad-spectrum bioagent detection system. This autonomous instrument, the BioBriefcase, will monitor the environment and warn against bacterium, virus, and toxin based biological attacks. At the heart of this device, inexpensive polymer microfluidic chips will carry out sample preparation and analysis. Fabrication of polymer microfluidic chips involves the creation of a master in etched glass; plating of the master to produce a nickel stamp; large lot chip replication by injection molding; and thermal chip sealing. Since the performance and reliability of microfluidic chips are very sensitive to fluidic impedance and to electromagnetic fluxes, the microchannel dimensions and shape have to be tightly controlled during chip fabrication. In this talk, we will present an overview of chip design and fabrication. Metrology data collected at different fabrication steps and the dimensional deviations of the polymer chip from the original design will be discussed.

More Details

Metathesis depolymerization for removable surfactant templates

Proposed for publication in Journal of the American Chemical Society.

Simmons, Blake S.; McElhanon, James R.; Rahimian, Kamyar R.; Zifer, Thomas Z.

Current methodologies for the production of meso- and nanoporous materials include the use of a surfactant to produce a self-assembled template around which the material is formed. However, post-production surfactant removal often requires centrifugation, calcination, and/or solvent washing which can damage the initially formed material architecture(s). Surfactants that can be disassembled into easily removable fragments following material preparation would minimize processing damage to the material structure, facilitating formation of templated hybrid architectures. Herein, we describe the design and synthesis of novel cationic and anionic surfactants with regularly spaced unsaturation in their hydrophobic hydrocarbon tails and the first application of ring closing metathesis depolymerization to surfactant degradation resulting in the mild, facile decomposition of these new compounds to produce relatively volatile nonsurface active remnants.

More Details

Patterning electrohydrodynamic flows with conductive obstacles in microfluidic channels

Skulan, Andrew S.; Fiechtner, Gregory J.; Cummings, Eric B.; Simmons, Blake S.

Flow patterns with both recirculating and unidirectional characteristics are useful for controlled mixing and pumping within microfluidic devices. We have developed a fabrication process that converts injection-molded polymer chips into devices that demonstrate induced-charge electroosmosis (ICEO) effects (1,2) in AC fields. Polymeric insulating posts are coated with metal to produce a nonuniform zeta potential under an applied electric field. Induced flows are analyzed by particle image velocimetry. Stable, recirculating flow patterns are discussed, along with their potential to produce well-characterized and reversible streamlines for on-chip mixing in chemical separation and synthesis devices. Asymmetric conductive features can bias the flow direction, generating unidirectional pumping in an AC field. This pumping approach will be discussed in comparison with DC electrokinetic pumps we have studied.

More Details

Assessment of disinfectants in explosive destruction system for biological agent destruction : LDRD final report FY04

Buffleben, George M.; Crooker, Paul J.; Didlake, John E.; Simmons, Blake S.; Bradshaw, Robert W.

Treatment systems that can neutralize biological agents are needed to mitigate risks from novel and legacy biohazards. Tests with Bacillus thuringiensis and Bacillus steurothemophilus spores were performed in a 190-liter, 1-112 lb TNT equivalent rated Explosive Destruction System (EDS) system to evaluate its capability to treat and destroy biological agents. Five tests were conducted using three different agents to kill the spores. The EDS was operated in steam autoclave, gas fumigation and liquid decontamination modes. The first three tests used EDS as an autoclave, which uses pressurized steam to kill the spores. Autoclaving was performed at 130-140 deg C for up to 2-hours. Tests with chlorine dioxide at 750 ppm concentration for 1 hour and 10% (vol) aqueous chlorine bleach solution for 1 hour were also performed. All tests resulted in complete neutralization of the bacterial spores based on no bacterial growth in post-treatment incubations. Explosively opening a glass container to expose the bacterial spores for treatment with steam was demonstrated and could easily be done for chlorine dioxide gas or liquid bleach.

More Details
Results 51–69 of 69
Results 51–69 of 69