The Multi-Fidelity Toolkit (MFTK) is a simulation tool being developed at Sandia National Laboratories for aerodynamic predictions of compressible flows over a range of physics fidelities and computational speeds. These models include the Reynolds-Averaged-Navier-Stokes (RANS) equations, the Euler equations, and modified Newtonian aerodynamics (MNA) equations, and they can be invoked independently or coupled with hierarchical Kriging to interpolate between high-fidelity simulations using lower-fidelity data. However, as with any new simulation capability, verification and validation are necessary to gather credibility evidence. This work describes formal code- and solution-verification activities as well as model validation with uncertainty considerations. Code verification is performed on the MNA model by comparing with an analytical solution for flat-plate and inclined-plate geometries. Solution-verification activities include grid-refinement studies of HIFiRE-1 wind tunnel measurements, which are used for validation, for all model fidelities. A thorough treatment of the validation comparison with prediction error and validation uncertainty is also presented.
The Multi-Fidelity Toolkit (MFTK) is a simulation tool being developed at Sandia National Laboratories for aerodynamic predictions of compressible flows over a range of physics fidelities and computational speeds. These models include the Reynolds-Averaged Navier–Stokes (RANS) equations, the Euler equations, and modified Newtonian aerodynamics (MNA) equations, and they can be invoked independently or coupled with hierarchical Kriging to interpolate between high-fidelity simulations using lower-fidelity data. However, as with any new simulation capability, verification and validation are necessary to gather credibility evidence. This work describes formal model validation with uncertainty considerations that leverages experimental data from the HIFiRE-1 wind tunnel tests. The geometry is a multi-conic shape that produces complex flow phenomena under hypersonic conditions. A thorough treatment of the validation comparison with prediction error and validation uncertainty is also presented.
Diffusion bonded heat exchangers, also known as printed circuit heat exchangers (PCHEs), have numerous benefits over traditional shell and tube heat exchangers including high pressure containment, a compact size with 1000 to 5000 m2 of surface area per unit volume, and lower costs. One emerging application is in hydrogen vehicle fueling stations as a hydrogen pre-cooler (H2PC™) where the hydrogen is cooled at pressures up to 900 bar. These pre-coolers must be able to withstand pressure cycling over 105 cycles during the fueling station lifetime without degradation of their pressure vessel integrity that could result in hydrogen leakage.
Microchannel heat exchangers have seen increasing adoption in many high-pressure applications in recent decades but are subject to particulate fouling from the relatively small channel size compared to traditional designs. Typical cleaning methods require process shutdown, heat exchanger removal, cleaning, then reassembly. The objective of this project was to refine and transfer technology to enable header design improvements for Cleaning-in-Place (CIP), allowing for reduced/negligible process interruption for the cleaning process. The technology transfer was from Sandia National Laboratories (Sandia) to Vacuum Process Engineering, Inc. (VPE). This primary purpose of CIP was developed while considering channel flow uniformity and heat exchanger cost. The project phases were to 1) capture and define potential improvement options, 2) evaluate options with both simulation and experiments, and 3) transfer design knowledge to the industry partner. These efforts resulted in improved header designs from the first known focused effort in this area. The improved designs will help the entire microchannel heat exchanger field that has applications in supercritical CO2 power cycles, hydrogen (fuel cell) vehicle fueling, liquified natural gas processing, and more.
A blind CFD validation challenge is being organized for the unsteady transonic shock motion induced by the Sandia Axisymmetric Transonic Hump, which echoes the Bachalo-Johnson configuration. The wind tunnel and model geometry will be released at the start of the validation challenge along with flow boundary conditions. Primary data concerning the unsteady separation region will be released at the conclusion of the challenge after computational entrants have been submitted. This paper details the organization of the challenge, its schedule, and the metrics of comparison by which the models will be assessed.
An experimental characterization of the flow environment for the Sandia Axisymmetric Transonic Hump is presented. This is an axisymmetric model with a circular hump tested at a transonic Mach number, similar to the classic Bachalo-Johnson configuration. The flow is turbulent approaching the hump and becomes locally supersonic at the apex. This leads to a shock-wave/boundary-layer interaction, an unsteady separation bubble, and flow reattachment downstream. The characterization focuses on the quantities required to set proper boundary conditions for computational efforts described in the companion paper, including: 1) stagnation and test section pressure and temperature; 2) turbulence intensity; and 3) tunnel wall boundary layer profiles. Model characterization upstream of the hump includes: 1) surface shear stress; and 2) boundary layer profiles. Note: Numerical values characterizing the experiment have been redacted from this version of the paper. Model geometry and boundary conditions will be withheld until the official start of the Validation Challenge, at which time a revised version of this paper will become available. Data surrounding the hump are considered final results and will be withheld until completion of the Validation Challenge.
Supercritical CO2 (sCO2) power cycles find potential application with a variety of heat sources including nuclear, concentrated solar (CSP), coal, natural gas, and waste heat sources, and consequently cover a wide range of scales. Most studies to date have focused on the performance of sCO2 power cycles, while economic analyses have been less prevalent, due in large part to the relative scarcity of reliable cost estimates for sCO2 power cycle components. Further, the accuracy of existing sCO2 techno-economic analyses suffer from a small sample set of vendor-based component costs for any given study. Improved accuracy of sCO2 component cost estimation is desired to enable a shift in focus from plant efficiency to economics as a driver for commercialization of sCO2 technology. This study reports on sCO2 component cost scaling relationships that have been developed collaboratively from an aggregate set of vendor quotes, cost estimates, and published literature. As one of the world’s largest supporters of sCO2 research and development, the Department of Energy (DOE) National Laboratories have access to a considerable pool of vendor component costs that span multiple applications specific to each National Laboratory’s mission, including fossil-fueled sCO2 applications at the National Energy Technology Laboratory (NETL), CSP at the National Renewable Energy Laboratory (NREL), and CSP, nuclear, and distributed energy sources at Sandia National Laboratories (SNL). The resulting cost correlations are relevant to sCO2 components in all these applications, and for scales ranging from 5-750 MWe. This work builds upon prior work at SNL, in which sCO2 component cost models were developed for CSP applications ranging from 1-100 MWe in size. Similar to the earlier SNL efforts, vendor confidentiality has been maintained throughout this collaboration and in the published results. Cost models for each component were correlated from 4-24 individual quotes from multiple vendors, although the individual cost data points are proprietary and not shown. Cost models are reported for radial and axial turbines, integrally-geared and barrel-style centrifugal compressors, high temperature and low temperature recuperators, dry sCO2 coolers, and primary heat exchangers for coal and natural gas fuel sources. These models are applicable to sCO2-specific components used in a variety of sCO2 cycle configurations, and include incremental cost factors for advanced, high temperature materials for relevant components. Non-sCO2-specific costs for motors, gearboxes, and generators have been included to allow cycle designers to explore the cost implications of various turbomachinery configurations. Finally, the uncertainty associated with these component cost models is quantified by using AACE International-style class ratings for vendor estimates, combined with component cost correlation statistics.
Flow maldistribution in microchannel heat exchanger(MCHEs) can negatively impact heat exchanger effectiveness.Several rules of thumb exist about designing for uniform flow,but very little data are published to support these claims. In thiswork, complementary experiments and computational fluiddynamics (CFD) simulations of MCHEs enable a solidunderstanding of flow uniformity to a higher level of detail thanpreviously seen. Experiments provide a validation data source toassess CFD predictive capability. The traditional semi-circularheader geometry is tested. Experiments are carried out in a clearacrylic MCHE and water flow is measured optically with particleimage velocimetry. CFD boundary conditions are matched tothose in the experiment and the outputs, specifically velocity andturbulent kinetic energy profiles, are compared.
Supercritical CO2 (sCO2) is a fluid of interest for advanced power cycles that can reach thermal to electric energy conversion efficiencies of 50% or higher. Of particular interest for fossil-fired natural gas is the Allam cycle that captures nearly all CO2 emissions and exports it as a fluid stream where it may be of value. The combustion process conditions are unlike any before realized with 90-95% CO2 concentration, temperatures around 1000°C, and pressures near 300 bar. This work outlines the experimental feasibility of flow measurements to acquire the first known data in pure sCO2 at similar but reduced temperature and pressure conditions.
Over the past ten years, the Department of Energy (DOE) has helped to develop components and technologies for the Supercritical Carbon Dioxide (sCO2) power cycle capable of efficient operation at high temperatures and high efficiency. The DOE Offices of Fossil Energy, Nuclear Energy, and Energy Efficiency and Renewable Energy collaborated in the planning and execution of the sCO2 Power Cycle Summit conducted in Albuquerque, NM in November 2017. The summit brought together participants from government, national laboratories, research, and industry to engage in discussions regarding the future of sCO2 Power Cycles Technology. This report summarizes the work involved in summit planning and execution, before, during, and after the event, including the coordination between three DOE offices and technical content presented at the event.
Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0°, 10°, and 45°), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47° contact angle and non-wetting = 93° contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of ~3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45° tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that photovoltaic modules and heliostats can be designed to maximize self-cleaning.
Transient convection has been investigated experimentally for the purpose of providing Computational Fluid Dynamics (CFD) validation benchmark data. A specialized facility for validation benchmark experiments called the Rotatable Buoyancy Tunnel was used to acquire thermal and velocity measurements of flow over a smooth, vertical heated plate. The initial condition was forced convection downward with subsequent transition to mixed convection, ending with natural convection upward after a flow reversal. Data acquisition through the transient was repeated for ensemble-averaged results. With simple flow geometry, validation data were acquired at the benchmark level. All boundary conditions (BCs) were measured and their uncertainties quantified. Temperature profiles on all four walls and the inlet were measured, as well as as-built test section geometry. Inlet velocity profiles and turbulence levels were quantified using Particle Image Velocimetry. System Response Quantities (SRQs) were measured for comparison with CFD outputs and include velocity profiles, wall heat flux, and wall shear stress. Extra effort was invested in documenting and preserving the validation data. Details about the experimental facility, instrumentation, experimental procedure, materials, BCs, and SRQs are made available through this paper. As a result, the latter two are available for download and the other details are included in this work.
We present computational fluid dynamics (CFD) validation dataset for turbulent forced convection on a vertical plate. The design of the apparatus is based on recent validation literature and provides a means to simultaneously measure boundary conditions (BCs) and system response quantities (SRQs). Important inflow quantities for Reynolds-Averaged Navier-Stokes (RANS). CFD are also measured. Data are acquired at two heating conditions and cover the range 40,000 < Rex < 300,000, 357 < Reδ2 < 813, and 0.02 < Gr/Re2 < 0.232.