Publications

Results 51–75 of 113
Skip to search filters

Reference design and operations for deep borehole disposal of high-level radioactive waste

Arnold, Bill W.; Brady, Patrick V.; Bauer, Stephen J.; Herrick, Courtney G.

A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall, the results of the reference design development and the cost analysis support the technical feasibility of the deep borehole disposal concept for high-level radioactive waste.

More Details

Thermal-mechanical modeling of deep borehole disposal of high-level radioactive waste

Arnold, Bill W.

Disposal of high-level radioactive waste, including spent nuclear fuel, in deep (3 to 5 km) boreholes is a potential option for safely isolating these wastes from the surface and near-surface environment. Existing drilling technology permits reliable and cost-effective construction of such deep boreholes. Conditions favorable for deep borehole disposal in crystalline basement rocks, including low permeability, high salinity, and geochemically reducing conditions, exist at depth in many locations, particularly in geologically stable continental regions. Isolation of waste depends, in part, on the effectiveness of borehole seals and potential alteration of permeability in the disturbed host rock surrounding the borehole. Coupled thermal-mechanical-hydrologic processes induced by heat from the radioactive waste may impact the disturbed zone near the borehole and borehole wall stability. Numerical simulations of the coupled thermal-mechanical response in the host rock surrounding the borehole were conducted with three software codes or combinations of software codes. Software codes used in the simulations were FEHM, JAS3D, Aria, and Adagio. Simulations were conducted for disposal of spent nuclear fuel assemblies and for the higher heat output of vitrified waste from the reprocessing of fuel. Simulations were also conducted for both isotropic and anisotropic ambient horizontal stress in the host rock. Physical, thermal, and mechanical properties representative of granite host rock at a depth of 4 km were used in the models. Simulation results indicate peak temperature increases at the borehole wall of about 30 C and 180 C for disposal of fuel assemblies and vitrified waste, respectively. Peak temperatures near the borehole occur within about 10 years and decline rapidly within a few hundred years and with distance. The host rock near the borehole is placed under additional compression. Peak mechanical stress is increased by about 15 MPa (above the assumed ambient isotropic stress of 100 MPa) at the borehole wall for the disposal of fuel assemblies and by about 90 MPa for vitrified waste. Simulated peak volumetric strain at the borehole wall is about 420 and 2600 microstrain for the disposal of fuel assemblies and vitrified waste, respectively. Stress and volumetric strain decline rapidly with distance from the borehole and with time. Simulated peak stress at and parallel to the borehole wall for the disposal of vitrified waste with anisotropic ambient horizontal stress is about 440 MPa, which likely exceeds the compressive strength of granite if unconfined by fluid pressure within the borehole. The relatively small simulated displacements and volumetric strain near the borehole suggest that software codes using a nondeforming grid provide an adequate approximation of mechanical deformation in the coupled thermal-mechanical model. Additional modeling is planned to incorporate the effects of hydrologic processes coupled to thermal transport and mechanical deformation in the host rock near the heated borehole.

More Details

Deep borehole disposal of high-level radioactive waste

Brady, Patrick V.; Arnold, Bill W.; Freeze, Geoffrey A.; Swift, Peter N.; Bauer, Stephen J.; Rechard, Robert P.; Stein, Joshua S.

Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

More Details

An updated site scale saturated zone ground water transport model for yucca mountain

American Nuclear Society - 12th International High-Level Radioactive Waste Management Conference 2008

Kelkar, Sharad; Ding, Mei; Chu, Shaoping; Robinson, Bruce; Arnold, Bill W.; Meijer, Arend

This paper summarizes the numerical site scale model developed to simulate the transport of radionuclides via ground water in the saturated zone beneath Yucca Mountain.

More Details

Sensitivity analyses of radionuclide transport in the saturated zone at yucca mountain, nevada

American Nuclear Society - 12th International High-Level Radioactive Waste Management Conference 2008

Arnold, Bill W.; Hadgu, Teklu; Sallaberry, Cedric J.

Simulation of potential radionuclide transport in the saturated zone from beneath the proposed repository at Yucca Mountain to the accessible environment is an important aspect of the total system performance assessment (TSPA) for disposal of high-level radioactive waste at the site. Analyses of uncertainty and sensitivity are integral components of the TSPA and have been conducted at both the sub-system and system levels to identify parameters and processes that contribute to the overall uncertainty in predictions of repository performance. Results of the sensitivity analyses indicate that uncertainty in groundwater specific discharge along the flow path in the saturated zone from beneath the repository is an important contributor to uncertainty in TSPA results and is the dominant source of uncertainty in transport times in the saturated zone for most radionuclides. Uncertainties in parameters related to matrix diffusion in the volcanic units, colloid-facilitated transport, and sorption are also important contributors to uncertainty in transport times to differing degrees for various radionuclides.

More Details

Annual Site Environmental Report Sandia National Laboratories, Albuquerque, New Mexico, Calendar year 2007

Arnold, Bill W.; Sallaberry, Cedric J.

Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractor-operated facility. Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s environmental protection and monitoring programs through December 31, 2007. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and implementation of the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2007a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting (DOE 2007).

More Details

SNL-NUMO collaborative : development of a deterministic site characterization tool using multi-model ranking and inference

Arnold, Bill W.; Gray, Genetha A.; Grace, Matthew G.; Ahlmann, Michael A.

Uncertainty in site characterization arises from a lack of data and knowledge about a site and includes uncertainty in the boundary conditions, uncertainty in the characteristics, location, and behavior of major features within an investigation area (e.g., major faults as barriers or conduits), uncertainty in the geologic structure, as well as differences in numerical implementation (e.g., 2-D versus 3-D, finite difference versus finite element, grid resolution, deterministic versus stochastic, etc.). Since the true condition at a site can never be known, selection of the best conceptual model is very difficult. In addition, limiting the understanding to a single conceptualization too early in the process, or before data can support that conceptualization, may lead to confidence in a characterization that is unwarranted as well as to data collection efforts and field investigations that are misdirected and/or redundant. Using a series of numerical modeling experiments, this project examined the application and use of information criteria within the site characterization process. The numerical experiments are based on models of varying complexity that were developed to represent one of two synthetically developed groundwater sites; (1) a fully hypothetical site that represented a complex, multi-layer, multi-faulted site, and (2) a site that was based on the Horonobe site in northern Japan. Each of the synthetic sites were modeled in detail to provide increasingly informative 'field' data over successive iterations to the representing numerical models. The representing numerical models were calibrated to the synthetic site data and then ranked and compared using several different information criteria approaches. Results show, that for the early phases of site characterization, low-parameterized models ranked highest while more complex models generally ranked lowest. In addition, predictive capabilities were also better with the low-parameterized models. For the latter iterations, when more data were available, the information criteria rankings tended to converge on the higher parameterized models. Analysis of the numerical experiments suggest that information criteria rankings can be extremely useful for site characterization, but only when the rankings are placed in context and when the contribution of each bias term is understood.

More Details
Results 51–75 of 113
Results 51–75 of 113