Publications

Results 1–25 of 113
Skip to search filters

Site characterization for a deep borehole field test

15th International High-Level Radioactive Waste Management Conference 2015, IHLRWM 2015

Kuhlman, Rristopher L.; Arnold, Bill W.; Brady, Patrick V.; Sassani, David C.; Freeze, Geoffrey A.; Hardin, Ernest H.

Deep Borehole Disposal (DBD) of radioactive waste has some clear advantages over mined repositories, including incremental construction and loading, enhanced natural barriers provided by deep continental crystalline basement, and reduced site characterization. Unfavorable features for a DBD site include upward vertical fluid potential gradients, presence of economically exploitable natural resources, presence of high permeability connection from the waste disposal zone to the shallow subsurface, and significant probability of future volcanic activity. Site characterization activities would encompass geomechanical (i.e., rock stress state, fluid pressure, and faulting), geological (i.e., both overburden and bedrock lithology), hydrological (i.e., quantity of fluid, fluid convection properties, and solute transport mechanisms), chemical (i.e., rock and fluid interaction), and socioeconomic (i.e., likelihood for human intrusion) aspects. For a planned Deep Borehole Field Test (DBFT), site features and/or physical processes would be evaluated using both direct (i.e., sampling and in-hole testing) and indirect (i.e., surface and borehole geophysical) methods for efficient and effective characterization. Surface-based characterization would be used to guide the exploratory drilling program, once a candidate DBFT site has been selected. Borehole based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, petrology, and water chemistry) with depth, and to develop material and system parameters relevant for numerical simulation. While the site design of DBD could involve an array of disposal boreholes, it may not be necessary to characterize each borehole in detail. Characterization strategies will be developed in the DBFT that establish disposal system safety sufficient for licensing a disposal array.

More Details

Research needs for deep boreholes

15th International High-Level Radioactive Waste Management Conference 2015, IHLRWM 2015

Brady, Patrick V.; Arnold, Bill W.; MacKinnon, R.J.; Hardin, Ernest H.; Sassani, David C.; Kuhlman, Kristopher L.; Freeze, Geoffrey A.

While deep borehole disposal of nuclear waste should rely primarily on off-the-shelf technologies pioneered by the oil and gas and geothermal industries, the development of new science and technology will remain important. Key knowledge gaps have been outlined in the research roadmap for deep boreholes (B. Arnold et al, 2012, Research, Development, and Demonstration Roadmap for Deep Borehole Disposal, Sandia National Laboratories, SAND2012-8527P) and in a recent Deep Borehole Science Needs Workshop. Characterizing deep crystalline basement, understanding the nature and role of deep fractures, more precisely age-dating deep groundwaters, and demonstrating long-term performance of seals are all important topics of interest. Overlapping deep borehole and enhanced geothermal technology needs include: quantification of seal material performance/failure, stress measurement beyond the borehole, advanced drilling and completion tools, and better subsurface sensors. A deep borehole demonstration has the potential to trigger more focused study of deep hydrology, high temperature brine-rock interaction, and thermomechanical behavior.

More Details

Review of inputs provided to Jason Associates Corporation in support of RWEV-REP-001, the Analysis of Postclosure Groundwater Impacts report

Bryan, Charles R.; Weck, Philippe F.; Vaughn, P.; Arnold, Bill W.

Report RWEV-REP-001, Analysis of Postclosure Groundwater Impacts for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High Level Radioactive Waste at Yucca Mountain, Nye County, Nevada was issued by the DOE in 2009 and is currently being updated. Sandia National Laboratories (SNL) provided support for the original document, performing calculations and extracting data from the Yucca Mountain Performance Assessment Model that were used as inputs to the contaminant transport and dose calculations by Jason Associates Corporation, the primary developers of the DOE report. The inputs from SNL were documented in LSA-AR-037, Inputs to Jason Associates Corporation in Support of the Postclosure Repository Supplemental Environmental Impact Statement. To support the updating of the original Groundwater Impacts document, SNL has reviewed the inputs provided in LSA-AR-037 to verify that they are current and appropriate for use. The results of that assessment are documented here.

More Details

Theoretical foundation for measuring the groundwater age distribution

Gardner, William P.; Arnold, Bill W.

In this study, we use PFLOTRAN, a highly scalable, parallel, flow and reactive transport code to simulate the concentrations of 3H, 3He, CFC-11, CFC-12, CFC-113, SF6, 39Ar, 81Kr, 4He and themean groundwater age in heterogeneous fields on grids with an excess of 10 million nodes. We utilize this computational platform to simulate the concentration of multiple tracers in high-resolution, heterogeneous 2-D and 3-D domains, and calculate tracer-derived ages. Tracer-derived ages show systematic biases toward younger ages when the groundwater age distribution contains water older than the maximum tracer age. The deviation of the tracer-derived age distribution from the true groundwater age distribution increases with increasing heterogeneity of the system. However, the effect of heterogeneity is diminished as the mean travel time gets closer the tracer age limit. Age distributions in 3-D domains differ significantly from 2-D domains. 3D simulations show decreased mean age, and less variance in age distribution for identical heterogeneity statistics. High-performance computing allows for investigation of tracer and groundwater age systematics in high-resolution domains, providing a platform for understanding and utilizing environmental tracer and groundwater age information in heterogeneous 3-D systems. Groundwater environmental tracers can provide important constraints for the calibration of groundwater flow models. Direct simulation of environmental tracer concentrations in models has the additional advantage of avoiding assumptions associated with using calculated groundwater age values. This study quantifies model uncertainty reduction resulting from the addition of environmental tracer concentration data. The analysis uses a synthetic heterogeneous aquifer and the calibration of a flow and transport model using the pilot point method. Results indicate a significant reduction in the uncertainty in permeability with the addition of environmental tracer data, relative to the use of hydraulic measurements alone. Anthropogenic tracers and their decay products, such as CFC11, 3H, and 3He, provide significant constraint oninput permeability values in the model. Tracer data for 39Ar provide even more complete information on the heterogeneity of permeability and variability in the flow system than the anthropogenic tracers, leading to greater parameter uncertainty reduction.

More Details
Results 1–25 of 113
Results 1–25 of 113