Probabilistic Approaches for Fault-Tolerance and Scalability in Extreme-Scale Computing
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in numerical model predictions. Version 2.0 ffers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sensitivity analysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.
Abstract not provided.
Abstract not provided.
Computers and Fluids
Uncertainty quantification (UQ) deals with providing reasonable estimates of the uncertainties associated with an engineering model and propagating them to final engineering quantities of interest. We present a conceptual UQ framework for the case of shock hydrodynamics with Euler's equations where the uncertainties are assumed to lie principally in the equation of state (EOS). In this paper we consider experimental data as providing both data and an estimate of data uncertainty. We propose a specific Bayesian inference approach for characterizing EOS uncertainty in thermodynamic phase space. We show how this approach provides a natural and efficient methodology for transferring data uncertainty to engineering outputs through an EOS representation that understands and deals consistently with parameter correlations as sensed in the data.Historically, complex multiphase EOSs have been built utilizing tables as the delivery mechanism in order to amortize the cost of creation of the tables over many subsequent continuum scale runs. Once UQ enters into the picture, however, the proper operational paradigm for multiphase tables become much less clear. Using a simple single-phase Mie-Grüneisen model we experiment with several approaches and demonstrate how uncertainty can be represented. We also show how the quality of the tabular representation is of key importance. As a first step, we demonstrate a particular tabular approach for the Mie-Grüneisen model which when extended to multiphase tables should have value for designing a UQ-enabled shock hydrodynamic modeling approach that is not only theoretically sound but also robust, useful, and acceptable to the modeling community. We also propose an approach to separate data uncertainty from modeling error in the EOS. © 2012 Elsevier Ltd.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.