Soil-Science Mechanical/Capillary Pressure/Electrical Testing Methods applied to Molten-Salt Power-Source Separator Materials
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Chemical Education
The Chemistry Science Investigation: Dognapping Workshop was designed to (i) target and inspire fourth grade students to view themselves as Junior Scientists before their career decisions are solidified; (ii) enable hands-on experience in fundamental scientific concepts; (iii) increase public interaction with science, technology, engineering, and mathematical personnel by providing face-to-face opportunities; (iv) give teachers a pathway forward for scientific resources; (v) meet the New Mexico K–5 Science Benchmark Performance Standards; (vi) most importantly, ensure everyone has fun! For this workshop, the students are told they will be going to see a Chemistry Magic Show, but the performance is stopped when the Chemistry Dog is reportedly stolen. The students first clear their names using a series of interactive stations and then apply a number of science experiments to solve the mystery. This report describes the workshop in detail, which is suitable for large (~100 students per day) audiences but has flexibility to be modified for much smaller groups. An identical survey was given three times (before, immediately after, and 2 months after the workshop) to determine the impact on the students’ perception of science and scientists as well as determine the effectiveness in relaying scientific concepts through retention time. As a result, survey responses indicate that scientific information pertaining to the workshop is retained for up to 2 months.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Biofouling
A series of polysulfone and polyacrylate-based zwitterionic coatings were prepared on epoxy-primed aluminum substrata and characterized for their antifouling (AF) and fouling-release (FR) properties towards marine bacteria, microalgae and barnacles. The zwitterionic polymer coatings provided minimal resistance against bacterial biofilm retention and microalgal cell attachment, but facilitated good removal of attached microbial biomass by exposure to water-jet apparatus generated hydrodynamic shearing forces. Increasing the ion content of the coatings improved the AF properties, but required a stronger adhesive bond to the epoxy-primed aluminum substratum to prevent coating swelling and dissolution. Grafted poly(sulfobetaine) (gpSBMA), the most promising zwitterionic coating identified from microfouling evaluations, enabled the removal of four out of five barnacles reattached to its surface without incurring damage to their baseplates. This significant result indicated that gpSBMA relied predominately on its surface chemistry for its FR properties since it was very thin (~1–2 µm) relative to commercial coating standards (>200 µm).
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.