Publications

Results 26–50 of 57
Skip to search filters

Performance of nonlinear modal model in predicting complex bilinear stiffness

Conference Proceedings of the Society for Experimental Mechanics Series

Pacini, Benjamin R.; Holzmann, Wilfried A.; Mayes, R.L.

Several recent studies (Mayes, R.L., Pacini, B.R., Roettgen, D.R.: A modal model to simulate typical structural dynamics nonlinearity. In: Proceedings of the 34th International Modal Analysis Conference. Orlando, FL, (2016); Pacini, B.R., Mayes, R.L., Owens, B.C., Schultz, R.: Nonlinear finite element model updating, part I: experimental techniques and nonlinear modal model parameter extraction. In: Proceedings of the 35th international modal analysis conference, Garden Grove, CA, (2017)) have investigated predicting nonlinear structural vibration responses using modified modal models. In such models, a nonlinear element is added in parallel to the traditional linear spring and damping elements. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. Previous studies have predominantly applied this method to idealistic structures. In this work, the nonlinear modal modeling technique is applied to a more realistic industrial aerospace structure which exhibits complex bilinear behavior. Linear natural frequencies, damping values, and mode shapes are first extracted from low level shaker testing. Subsequently, the structure is excited using high level tailored shaker inputs. The resulting response data are modally filtered and used to empirically derive the nonlinear elements which, together with their linear counterparts, comprise the nonlinear modal model. This model is then used in both modal and physical domain simulations. Comparisons to measured data are made and the performance of the nonlinear modal model to predict this complex bilinear behavior is discussed.

More Details

Empirically-derived, constitutive damping model for cellular silicone

Conference Proceedings of the Society for Experimental Mechanics Series

Russ, Jonathan B.; Pacini, Benjamin R.

One of the more common forms of passive vibration isolation in mechanical systems has been the use of elastomeric or foam pads. Cellular silicone foam is one such example which has been used for vibration isolation and mitigating the effects of mechanical shock. There are many desirable properties of cellular silicone, including its resilience and relative insensitivity to environmental extremes. However, there is very little test data that is useful for understanding its dynamic characteristics or for the development of a predictive finite element model. The problem becomes increasingly difficult since foam materials typically exhibit nonlinear damping and stiffness characteristics. In this paper we present a test fixture design and method for extraction of a few dynamic properties of one type of cellular silicone foam pad. The nonlinear damping characteristics derived from the experimental testing are then used to attempt to improve the predictive capability of a linear finite element model of the system. Difficulties and lessons learned are also presented.

More Details
Results 26–50 of 57
Results 26–50 of 57