Publications

Results 151–195 of 195
Skip to search filters

Fully integrated safeguards and security for reprocessing plant monitoring

Cipiti, Benjamin B.; Duran, Felicia A.; Middleton, Bobby M.; Key, Rebecca K.

Nuclear fuel reprocessing plants contain a wealth of plant monitoring data including material measurements, process monitoring, administrative procedures, and physical protection elements. Future facilities are moving in the direction of highly-integrated plant monitoring systems that make efficient use of the plant data to improve monitoring and reduce costs. The Separations and Safeguards Performance Model (SSPM) is an analysis tool that is used for modeling advanced monitoring systems and to determine system response under diversion scenarios. This report both describes the architecture for such a future monitoring system and present results under various diversion scenarios. Improvements made in the past year include the development of statistical tests for detecting material loss, the integration of material balance alarms to improve physical protection, and the integration of administrative procedures. The SSPM has been used to demonstrate how advanced instrumentation (as developed in the Material Protection, Accounting, and Control Technologies campaign) can benefit the overall safeguards system as well as how all instrumentation is tied into the physical protection system. This concept has the potential to greatly improve the probability of detection for both abrupt and protracted diversion of nuclear material.

More Details

Transformative monitoring approaches for reprocessing

Cipiti, Benjamin B.

The future of reprocessing in the United States is strongly driven by plant economics. With increasing safeguards, security, and safety requirements, future plant monitoring systems must be able to demonstrate more efficient operations while improving the current state of the art. The goal of this work was to design and examine the incorporation of advanced plant monitoring technologies into safeguards systems with attention to the burden on the operator. The technologies examined include micro-fluidic sampling for more rapid analytical measurements and spectroscopy-based techniques for on-line process monitoring. The Separations and Safeguards Performance Model was used to design the layout and test the effect of adding these technologies to reprocessing. The results here show that both technologies fill key gaps in existing materials accountability that provide detection of diversion events that may not be detected in a timely manner in existing plants. The plant architecture and results under diversion scenarios are described. As a tangent to this work, both the AMUSE and SEPHIS solvent extraction codes were examined for integration in the model to improve the reality of diversion scenarios. The AMUSE integration was found to be the most successful and provided useful results. The SEPHIS integration is still a work in progress and may provide an alternative option.

More Details

Mesoscale to plant-scale models of nuclear waste reprocessing

Rao, Rekha R.; Pawlowski, Roger P.; Brotherton, Christopher M.; Cipiti, Benjamin B.; Domino, Stefan P.; Jove Colon, Carlos F.; Moffat, Harry K.; Nemer, Martin N.; Noble, David R.; O'Hern, Timothy J.

Imported oil exacerabates our trade deficit and funds anti-American regimes. Nuclear Energy (NE) is a demonstrated technology with high efficiency. NE's two biggest political detriments are possible accidents and nuclear waste disposal. For NE policy, proliferation is the biggest obstacle. Nuclear waste can be reduced through reprocessing, where fuel rods are separated into various streams, some of which can be reused in reactors. Current process developed in the 1950s is dirty and expensive, U/Pu separation is the most critical. Fuel rods are sheared and dissolved in acid to extract fissile material in a centrifugal contactor. Plants have many contacts in series with other separations. We have taken a science and simulation-based approach to develop a modern reprocessing plant. Models of reprocessing plants are needed to support nuclear materials accountancy, nonproliferation, plant design, and plant scale-up.

More Details

The integration of process monitoring for safeguards

Cipiti, Benjamin B.; Zinaman, Owen R.

The Separations and Safeguards Performance Model is a reprocessing plant model that has been developed for safeguards analyses of future plant designs. The model has been modified to integrate bulk process monitoring data with traditional plutonium inventory balances to evaluate potential advanced safeguards systems. Taking advantage of the wealth of operator data such as flow rates and mass balances of bulk material, the timeliness of detection of material loss was shown to improve considerably. Four diversion cases were tested including both abrupt and protracted diversions at early and late times in the run. The first three cases indicated alarms before half of a significant quantity of material was removed. The buildup of error over time prevented detection in the case of a protracted diversion late in the run. Some issues related to the alarm conditions and bias correction will need to be addressed in future work. This work both demonstrates the use of the model for performing diversion scenario analyses and for testing advanced safeguards system designs.

More Details

Separations and safeguards model integration

Cipiti, Benjamin B.; Zinaman, Owen R.

Research and development of advanced reprocessing plant designs can greatly benefit from the development of a reprocessing plant model capable of transient solvent extraction chemistry. This type of model can be used to optimize the operations of a plant as well as the designs for safeguards, security, and safety. Previous work has integrated a transient solvent extraction simulation module, based on the Solvent Extraction Process Having Interaction Solutes (SEPHIS) code developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM) developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The goal of this work was to strengthen the integration by linking more variables between the two codes. The results from this integrated model show expected operational performance through plant transients. Additionally, ORIGEN source term files were integrated into the SSPM to provide concentrations, radioactivity, neutron emission rate, and thermal power data for various spent fuels. This data was used to generate measurement blocks that can determine the radioactivity, neutron emission rate, or thermal power of any stream or vessel in the plant model. This work examined how the code could be expanded to integrate other separation steps and benchmark the results to other data. Recommendations for future work will be presented.

More Details

Optimizing near real time accountability for reprocessing

Cipiti, Benjamin B.

Near Real Time Accountability (NRTA) of actinides at high precision in reprocessing plants has been a long sought-after goal in the safeguards community. Achieving this goal is hampered by the difficulty of making precision measurements in the reprocessing environment, equipment cost, and impact to plant operations. Thus the design of future reprocessing plants requires an optimization of different approaches. The Separations and Safeguards Performance Model, developed at Sandia National Laboratories, was used to evaluate a number of NRTA strategies in a UREX+ reprocessing plant. Strategies examined include the incorporation of additional actinide measurements of internal plant vessels, more use of process monitoring data, and the option of periodic draining of inventory to key tanks. Preliminary results show that the addition of measurement technologies can increase the overall measurement uncertainty due to additional error propagation, so care must be taken when designing an advanced system. Initial results also show that relying on a combination of different NRTA techniques will likely be the best option. The model provides a platform for integrating all the data. The modeling results for the different NRTA options under various material loss conditions will be presented.

More Details

Integrated safeguards & security for material protection, accounting, and control

Cipiti, Benjamin B.; Duran, Felicia A.

Traditional safeguards and security design for fuel cycle facilities is done separately and after the facility design is near completion. This can result in higher costs due to retrofits and redundant use of data. Future facilities will incorporate safeguards and security early in the design process and integrate the systems to make better use of plant data and strengthen both systems. The purpose of this project was to evaluate the integration of materials control and accounting (MC&A) measurements with physical security design for a nuclear reprocessing plant. Locations throughout the plant where data overlap occurs or where MC&A data could be a benefit were identified. This mapping is presented along with the methodology for including the additional data in existing probabilistic assessments to evaluate safeguards and security systems designs.

More Details

Fusion-fission hybrids for nuclear waste transmutation: A synergistic step between Gen-IV fission and fusion reactors

Fusion Engineering and Design

Mehlhorn, Thomas A.; Cipiti, Benjamin B.; Olson, C.L.; Rochau, Gary E.

Energy demand and GDP per capita are strongly correlated, while public concern over the role of energy in climate change is growing. Nuclear power plants produce 16% of world electricity demands without greenhouse gases. Generation-IV advanced nuclear energy systems are being designed to be safe and economical. Minimizing the handling and storage of nuclear waste is important. NIF and ITER are bringing sustainable fusion energy closer, but a significant gap in fusion technology development remains. Fusion-fission hybrids could be a synergistic step to a pure fusion economy and act as a technology bridge. We discuss how a pulsed power-driven Z-pinch hybrid system producing only 20 MW of fusion yield can drive a sub-critical transuranic blanket that transmutes 1280 kg of actinide wastes per year and produces 3000 MW. These results are applicable to other inertial and magnetic fusion energy systems. A hybrid system could be introduced somewhat sooner because of the modest fusion yield requirements and can provide both a safe alternative to fast reactors for nuclear waste transmutation and a maturation path for fusion technology. The development and demonstration of advanced materials that withstand high-temperature, high-irradiation environments is a fundamental technology issue that is common to both fusion-fission hybrids and Generation-IV reactors. © 2008 Elsevier B.V. All rights reserved.

More Details

Data validation and security for reprocessing

Cipiti, Benjamin B.; Duran, Felicia A.; Merkle, Peter B.; Tolk, Keith M.

Next generation nuclear fuel cycle facilities will face strict requirements on security and safeguards of nuclear material. These requirements can result in expensive facilities. The purpose of this project was to investigate how to incorporate safeguards and security into one plant monitoring system early in the design process to take better advantage of all plant process data, to improve confidence in the operation of the plant, and to optimize costs. An existing reprocessing plant materials accountancy model was examined for use in evaluating integration of safeguards (both domestic and international) and security. International safeguards require independent, secure, and authenticated measurements for materials accountability--it may be best to design stand-alone systems in addition to domestic safeguards instrumentation to minimize impact on operations. In some cases, joint-use equipment may be appropriate. Existing domestic materials accountancy instrumentation can be used in conjunction with other monitoring equipment for plant security as well as through the use of material assurance indicators, a new metric for material control that is under development. Future efforts will take the results of this work to demonstrate integration on the reprocessing plant model.

More Details

An Assessment of Spent Fuel Reprocessing for Actinide Destruction and Resource Sustainability

Cipiti, Benjamin B.

The reprocessing and recycling of spent nuclear fuel can benefit the nuclear fuel cycle by destroying actinides or extending fissionable resources if uranium supplies become limited. The purpose of this study was to assess reprocessing and recycling in both fast and thermal reactors to determine the effectiveness for actinide destruction and resource utilization. Fast reactor recycling will reduce both the mass and heat load of actinides by a factor of 2, but only after 3 recycles and many decades. Thermal reactor recycling is similarly effective for reducing actinide mass, but the heat load will increase by a factor of 2. Economically recoverable reserves of uranium are estimated to sustain the current global fleet for the next 100 years, and undiscovered reserves and lower quality ores are estimated to contain twice the amount of economically recoverable reserves--which delays the concern of resource utilization for many decades. Economic analysis reveals that reprocessed plutonium will become competitive only when uranium prices rise to about %24360 per kg. Alternative uranium sources are estimated to be competitive well below that price. Decisions regarding the development of a near term commercial-scale reprocessing fuel cycle must partially take into account the effectiveness of reactors for actnides destruction and the time scale for when uranium supplies may become limited. Long-term research and development is recommended in order to make more dramatic improvements in actinide destruction and cost reductions for advanced fuel cycle technologies.The original scope of this work was to optimize an advanced fuel cycle using a tool that couples a reprocessing plant simulation model with a depletion analysis code. Due to funding and time constraints of the late start LDRD process and a lack of support for follow-on work, the project focused instead on a comparison of different reprocessing and recycling options. This optimization study led to new insight into the fuel cycle. AcknowledgementThe authors would like to acknowledge the support of Laboratory Directed Research and Development Project 125862 for funding this research.

More Details

The role of Z-pinch fusion transmutation of waste in the nuclear fuel cycle

Cipiti, Benjamin B.; Martin, William J.; Mehlhorn, Thomas A.; Rochau, Gary E.; Guild-Bingham, Avery G.

The resurgence of interest in reprocessing in the United States with the Global Nuclear Energy Partnership has led to a renewed look at technologies for transmuting nuclear waste. Sandia National Laboratories has been investigating the use of a Z-Pinch fusion driver to burn actinide waste in a sub-critical reactor. The baseline design has been modified to solve some of the engineering issues that were identified in the first year of work, including neutron damage and fuel heating. An on-line control feature was added to the reactor to maintain a constant neutron multiplication with time. The transmutation modeling effort has been optimized to produce more accurate results. In addition, more attention was focused on the integration of this burner option within the fuel cycle including an investigation of overall costs. This report presents the updated reactor design, which is able to burn 1320 kg of actinides per year while producing 3,000 MWth.

More Details

Fusion-fission hybrids for nuclear waste transmutation : a synergistic step between Gen-IV fission and fusion reactors

Mehlhorn, Thomas A.; Cipiti, Benjamin B.; Rochau, G.A.

Energy demand and GDP per capita are strongly correlated, while public concern over the role of energy in climate change is growing. Nuclear power plants produce 16% of world electricity demands without greenhouse gases. Generation-IV advanced nuclear energy systems are being designed to be safe and economical. Minimizing the handling and storage of nuclear waste is important. NIF and ITER are bringing sustainable fusion energy closer, but a significant gap in fusion technology development remains. Fusion-fission hybrids could be a synergistic step to a pure fusion economy and act as a technology bridge. We discuss how a pulsed power-driven Z-pinch hybrid system producing only 20 MW of fusion yield can drive a sub-critical transuranic blanket that transmutes 1280 kg of actinide wastes per year and produces 3000 MW. These results are applicable to other inertial and magnetic fusion energy systems. A hybrid system could be introduced somewhat sooner because of the modest fusion yield requirements and can provide both a safe alternative to fast reactors for nuclear waste transmutation and a maturation path for fusion technology. The development and demonstration of advanced materials that withstand high-temperature, high-irradiation environments is a fundamental technology issue that is common to both fusion-fission hybrids and Generation-IV reactors.

More Details

Fusion transmutation of waste: design and analysis of the in-zinerator concept

Cleary, Virginia D.; Cipiti, Benjamin B.; Guild-Bingham, Avery G.; Cook, Jason T.; Durbin, S.G.; Keith, Rodney L.; Morrow, Charles W.; Rochau, Gary E.; Turgeon, Matthew C.; Young, Michael F.

Due to increasing concerns over the buildup of long-lived transuranic isotopes in spent nuclear fuel waste, attention has been given in recent years to technologies that can burn up these species. The separation and transmutation of transuranics is part of a solution to decreasing the volume and heat load of nuclear waste significantly to increase the repository capacity. A fusion neutron source can be used for transmutation as an alternative to fast reactor systems. Sandia National Laboratories is investigating the use of a Z-Pinch fusion driver for this application. This report summarizes the initial design and engineering issues of this ''In-Zinerator'' concept. Relatively modest fusion requirements on the order of 20 MW can be used to drive a sub-critical, actinide-bearing, fluid blanket. The fluid fuel eliminates the need for expensive fuel fabrication and allows for continuous refueling and removal of fission products. This reactor has the capability of burning up 1,280 kg of actinides per year while at the same time producing 3,000 MWth. The report discusses the baseline design, engineering issues, modeling results, safety issues, and fuel cycle impact.

More Details

Z-inertial fusion energy: power plant final report FY 2006

Olson, Craig L.; McConnell, Paul E.; Rochau, Gary E.; Vigil, Virginia L.; Cipiti, Benjamin B.; Rodriguez, Salvador B.; Morrow, Charles W.; Farnum, Cathy O.; Durbin, S.G.; Aragon, Dannelle S.

This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

More Details

Fusion transmutation of waste and the role of the In-Zinerator in the nuclear fuel cycle

Cipiti, Benjamin B.

The Z-Pinch fusion experiment at Sandia National Laboratories has been making significant progress in developing a high-energy fusion neutron source. This source has the potential to be used for the transmutation of nuclear waste. The goal of this research was to do a scoping-level design of a fusion-based transmuter to determine potential transmutation rates along with the fusion yield requirements. Two ''In-Zinerator'' designs have been developed to transmute the long-lived actinides that dominate the heat production in spent fuel. The first design burns up all transuranics (TRU) in spent fuel (Np, Pu, Am, Cm), and the second is focused only on burning up Am and Cm. The TRU In-Zinerator is designed for a fuel cycle requiring burners to get rid of all the TRU with no light water reactor (LWR) recycle. The Am/Cm In-Zinerator is designed for a fuel cycle with Np/Pu recycling in LWRs. Both types of In-Zinerators operate with a moderate fusion source driving a sub-critical actinide blanket. The neutron multiplication is 30, so a great deal of energy is produced in the blanket. With the design goal of generating 3,000 MW{sub th}, about 1,200 kg/yr of actinides can be destroyed in each In-Zinerator. Each TRU In-Zinerator will require a 20 MW fusion source, and it will take a total of 20 units (each producing 3,000 MWth) to burn up the TRU as fast as the current LWR fleet can produce it. Each Am/Cm In-Zinerator will require a 24 MW fusion source, and it will take a total of 2 units to burn up the Am/Cm as fast as the current LWR fleet can produce it. The necessary fusion yield could be achieved using a 200-240 MJ target fired once every 10 seconds.

More Details

Advanced instrumentation for reprocessing

Cipiti, Benjamin B.

Recent interest in reprocessing nuclear fuel in the U.S. has led to advanced separations processes that employ continuous processing and multiple extraction steps. These advanced plants will need to be designed with state-of-the-art instrumentation for materials accountancy and control. This research examines the current and upcoming instrumentation for nuclear materials accountancy for those most suited to the reprocessing environment. Though this topic has received attention time and again in the past, new technologies and changing world conditions require a renewed look and this subject. The needs for the advanced UREX+ separations concept are first identified, and then a literature review of current and upcoming measuring techniques is presented. The report concludes with a preliminary list of recommended instruments and measurement locations.

More Details
Results 151–195 of 195
Results 151–195 of 195