Publications

Results 126–150 of 176
Skip to search filters

Ion-luminescence properties of GaN films being developed for IPEM

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Rossi, Paolo R.; Doyle, Barney L.; Vizkelethy, G.; McDaniel, F.D.; Knapp, J.A.; Jauregui, H.; Villone, J.

Radiation effects microscopy (REM) for the next generation integrated circuits (ICs) will require GeV ions both to provide high ionization and to penetrate the thick overlayers in present day ICs. These ion beams can be provided by only a few cyclotrons in the world. Since it is extremely hard to focus these higher-energy ions, we have proposed the ion photon emission microscope (IPEM) that allows the determination of the ion hits by focusing the emitted photons to a position sensitive detector. The IPEM needs a thin luminescent foil that has high brightness, good spatial resolution and does not change the incident ion's energy and direction significantly. Available organic-phosphor foils require a large thickness to produce enough photons, which results in poor spatial resolution. To solve this problem, we have developed thin, lightly doped n-type GaN films that are extremely bright. We have grown high quality GaN films on sapphire using metal organic chemical vapor deposition (MOCVD), detached the films from the substrate using laser ablation, and made them self-supporting. The smallest foils have 1 mm2 area and 1 μm thickness. The optical properties, such as light yield, spectrum and decay times were measured and compared to those of conventional phosphors, by using both alpha particles from a radioactive source and 250 keV ions from an implanter. We found that the GaN performance strongly depends on composition and doping levels. The conclusion is that 1-2 μm GaN film of a 1 mm2 area may become an ideal ion position detector. © 2007 Elsevier B.V. All rights reserved.

More Details

Photofission in uranium by nuclear reaction gamma-rays

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Morse, Daniel H.; Antolak, Arlyn J.; Doyle, Barney L.

The ideal photon source for active interrogation of fissile materials would use monoenergetic photons to minimize radiation dose to surroundings. The photon energy would be high enough to produce relatively large photofission signals, but below the photoneutron threshold for common cargo materials in order to reduce background levels. To develop such a source, we are investigating the use of low-energy, proton-induced nuclear reactions to generate monochromatic, MeV-energy gamma-rays. Of particular interest are the nuclear resonances at 163 keV for the 11B(p,γ)12C reaction producing 11.7 MeV gamma-rays, 340 keV for the 19F(p,αγ)16O reaction producing 6.13 MeV photons, and 441 keV for the 7Li(p,γ)8Be reaction producing 14.8 and 17.7 MeV photons. A 700 keV Van de Graaff ion accelerator was used to test several potential (p,γ) materials and the gamma-ray yields from these targets were measured with a 5″ × 5″ NaI detector. A pulsed proton beam from the accelerator was used to induce prompt (neutron) and delayed (neutron and gamma-ray) photofission signals in uranium which were measured with 3He and NaI detectors. We show that the accelerator data is in good agreement with Monte Carlo radiation transport calculations and published results.

More Details

Particulate characterization by PIXE multivariate spectral analysis

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Antolak, Arlyn J.; Morse, Daniel H.; Grant, Patrick G.; Kotula, Paul G.; Doyle, Barney L.; Richardson, Charles B.

Obtaining particulate compositional maps from scanned PIXE (proton-induced X-ray emission) measurements is extremely difficult due to the complexity of analyzing spectroscopic data collected with low signal-to-noise at each scan point (pixel). Multivariate spectral analysis has the potential to analyze such data sets by reducing the PIXE data to a limited number of physically realizable and easily interpretable components (that include both spectral and image information). We have adapted the AXSIA (automated expert spectral image analysis) program, originally developed by Sandia National Laboratories to quantify electron-excited X-ray spectroscopy data, for this purpose. Samples consisting of particulates with known compositions and sizes were loaded onto Mylar and paper filter substrates and analyzed by scanned micro-PIXE. The data sets were processed by AXSIA and the associated principal component spectral data were quantified by converting the weighting images into concentration maps. The results indicate automated, nonbiased, multivariate statistical analysis is useful for converting very large amounts of data into a smaller, more manageable number of compositional components needed for locating individual particles-of-interest on large area collection media.

More Details

Damage equivalence of heavy ions in silicon bipolar junction transistors

IEEE Transactions on Nuclear Science

Bielejec, E.; Vizkelethy, G.; Kolb, N.R.; King, Donald B.; Doyle, Barney L.

Results of displacement damage correlation between neutrons, light ions and heavy ions in bipolar junction transistors are presented. Inverse gain degradation as the function of fluence was measured. The inverse gain degradation due to heavy ion irradiation followed the Messenger-Spratt equation, while some deviation was found for light ions. © 2006 IEEE.

More Details

Simulation of neutron displacement damage in bipolar junction transistors using high-energy heavy ion beams

Bielejec, Edward S.; Doyle, Barney L.; Buller, Daniel L.; Fleming, Robert M.; Hjalmarson, Harold P.

Electronic components such as bipolar junction transistors (BJTs) are damaged when they are exposed to radiation and, as a result, their performance can significantly degrade. In certain environments the radiation consists of short, high flux pulses of neutrons. Electronics components have traditionally been tested against short neutron pulses in pulsed nuclear reactors. These reactors are becoming less and less available; many of them were shut down permanently in the past few years. Therefore, new methods using radiation sources other than pulsed nuclear reactors needed to be developed. Neutrons affect semiconductors such as Si by causing atomic displacements of Si atoms. The recoiled Si atom creates a collision cascade which leads to displacements in Si. Since heavy ions create similar cascades in Si we can use them to create similar damage to what neutrons create. This LDRD successfully developed a new technique using easily available particle accelerators to provide an alternative to pulsed nuclear reactors to study the displacement damage and subsequent transient annealing that occurs in various transistor devices and potentially qualify them against radiation effects caused by pulsed neutrons.

More Details

Strain fields around high-energy ion tracks in α-quartz

Journal of Applied Physics

Follstaedt, D.M.; Norman, A.K.; Doyle, Barney L.; McDaniel, F.D.

Transmission electron microscopy has been used to image the tracks of high-energy 197Au +26 (374 MeV) and 127I +18 (241 MeV) ions incident in a nonchanneling direction through a prethinned specimen of hexagonal α-quartz (SiO 2). These ions have high electronic stopping powers in quartz, 24 and 19 keV/nm, respectively, which are sufficient to produce a disordered latent track. When the tracks are imaged with diffraction contrast using several different reciprocal lattice vectors, they exhibit a radial strain extending outward from their disordered centerline approximately 16 nm into the crystalline surroundings. The images are consistent with a radial strain field with cylindrical symmetry around the amorphous track, like that found in models developed to account for the lateral expansion of amorphous SiO 2 films produced by irradiation with high-energy ions. These findings provide an experimental basis for increased confidence in such modeling. © 2006 American Institute of Physics.

More Details

PIXE-quantified AXSIA: Elemental mapping by multivariate spectral analysis

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Doyle, Barney L.; Provencio, P.N.; Kotula, Paul G.; Antolak, Arlyn J.; Ryan, C.G.; Campbell, J.L.; Barrett, K.

Automated, nonbiased, multivariate statistical analysis techniques are useful for converting very large amounts of data into a smaller, more manageable number of chemical components (spectra and images) that are needed to describe the measurement. We report the first use of the multivariate spectral analysis program AXSIA (Automated eXpert Spectral Image Analysis) developed at Sandia National Laboratories to quantitatively analyze micro-PIXE data maps. AXSIA implements a multivariate curve resolution technique that reduces the spectral image data sets into a limited number of physically realizable and easily interpretable components (including both spectra and images). We show that the principal component spectra can be further analyzed using conventional PIXE programs to convert the weighting images into quantitative concentration maps. A common elemental data set has been analyzed using three different PIXE analysis codes and the results compared to the cases when each of these codes is used to separately analyze the associated AXSIA principal component spectral data. We find that these comparisons are in good quantitative agreement with each other. © 2006 Elsevier B.V. All rights reserved.

More Details

Heavy ion beam induced current/charge (IBIC) through insulating oxides

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Vizkelethy, Gyorgy; Brice, David K.; Doyle, Barney L.

Model experiments were performed on MOS (metal-oxide semiconductor) capacitors to study ion beam induced charge generation in silicon-on-insulator (SOI) devices. Surprisingly large induced charge was found and a lateral non-uniformity of the induced charge was discovered across the top electrode of the capacitor. In this paper we will give a simple model for the charge induction in MOS structures and an explanation of the lateral changes in the amount of induced charge. © 2006 Elsevier B.V. All rights reserved.

More Details
Results 126–150 of 176
Results 126–150 of 176