Doucet, Mathieu; Browning, James F.; Doyle, Barney L.; Charlton, Timothy R.; Ambaye, Haile; Seo, Joohyun; Mazza, Alessandro R.; Wenzel, John F.; Burns, George B.; Wixom, Ryan R.; Veith, Gabriel M.
Haynes 230 nickel alloy is one of the main contenders for salt containment in the design of thermal energy storage systems based on molten salts. A key problem for these systems is understanding the corrosion phenomena at the alloy–salt interface, and, in particular, the role played by chromium in these processes. In this study, thin films of Haynes 230, which is also rich in chromium, were measured with polarized neutron reflectometry and Rutherford backscattering spectrometry as a function of annealing temperature. Migration of chromium to the surface was observed for films annealed at 400 and 600 °C. Combining the two techniques determined that more than 60% of chromium comprising the as-prepared Haynes 230 layer moves to the surface when annealed at 600 °C, where it forms an oxide layer.
The National Nuclear Security Administration's Tritium Sustainment Program is responsible for the design, development, demonstration, testing, analysis, and characterization of tritium - producing burnable absorber rods (TPBARs) and their components used to produc e tritium for the nation's strategic stockpile. The FY1 9 call for proposals included the specific basic science research topic, "Demonstration and evaluation of advanced characterization methods, particularly for quantifying the concentration of lig ht isotopes ( 1 H, 3 H, 3 He , and 4 He, 6 Li and 7 Li ) in metal or ceramic matrices". Last year the same language appeared in the call for proposals, and a project IWO - 389859 was awarded to the Ion Beam Lab (IBL) at Sandia - NM which was successful using Elastic Recoil Detection, but in the future could have resulted in tritium contamination that jeopardized other equally important NNSA projects . An alternative approach using deuterium nuclear reaction analysis was proposed and funded in FY2019 which was also suc cessful and eliminated any possibility of contaminating the Ion Beam Laboratory with tritium, and will be described in this report . (page intentionally left blank)
This report documents work done at the Sandia Ion Beam Laboratory to develop a capability to produce 14 Me neutrons at levels sufficient for testing radiation effects on electronic materials and components. The work was primarily enabled by a laboratory directed research and development (LDRD) project. The main elements of the work were to optimize target lifetime, test a new thin- film target design concept to reduce tritium usage, design and construct a new target chamber and beamline optimized for high-flux tests, and conduct tests of effects on electronic devices and components. These tasks were all successfully completed. The improvements in target performance and target chamber design have increased the flux and fluence of 14 MV neutrons available at the test location by several orders of magnitude. The outcome of the project is that a new capability for testing radiation-effects on electronic components from 14 MeV neutrons is now available at Sandia National Laboratories. This capability has already been extensively used for many qualification and component evaluation and development tests.
Materials that incorporate hydrogen are of great interest for both scientific and technological reasons. The Ion Beam Laboratory at Sandia National Laboratories has developed techniques using micron to mm-size MeV ion beams to recoil H and its isotopes (Elastic Recoil Detection or ERD) that can very accurately make such measurements. However, there are many measurements that would benefit the field of materials science and technology that require much better resolution. To address these and many other issues, we have demonstrated that H can be recoiled through a thin film of Mylar by 70 keV electrons and detected with a channeltron electron multiplier (CEM). The electrons were steered away from the CEM by strong permanent magnets. This has proven the feasibility that the high energy electrons from a Transmission Electron Microscope-TEM can potentially be used to recoil and subsequently detect (e-ERD), quantify and map the concentration of H isotopes with nm resolution.
Diamond-like carbon (DLC) films were tribochemically formed from ambient hydrocarbons on the surface of a highly stable nanocrystalline Pt-Au alloy. A sliding contact between an alumina sphere and Pt-Au coated steel exhibited friction coefficients as low as μ = 0.01 after dry sliding in environments containing trace (ppb) organics. Ex situ analysis indicated that the change in friction coefficient was due to the formation of amorphous carbon films, and Raman spectroscopy and elastic recoil analysis showed that these films consist of sp2/sp3 amorphous carbon with as much as 20% hydrogen. Transmission electron microscopy indicated these films had thicknesses exceeding 100 nm, and were enhanced by the incorporation of worn Pt-Au nanoparticles. The result was highly wear-resistant, low-friction DLC/Pt-Au nanocomposites. Atomistic simulations of hydrocarbons under shear between rigid Pt slabs using a reactive force field showed stress-induced changes in bonding through chain scission, a likely route towards the formation of these coatings. This novel demonstration of in situ tribochemical formation of self-lubricating films has significant impact potential in a wide range of engineering applications.
The National Nuclear Security Administration's Tritium Sustainment Program is responsible for the design, development, demonstration, testing, analysis, and characterization of tritium-producing burnable absorber rods (TPBARs) and their components, in addition to producing tritium for the nation's strategic stockpile. The FY18 call for proposals included the specific basic science research topic, "Demonstration and evaluation of advanced characterization methods, particularly for quantifying the concentration of light isotopes (1H, 2H, and 4He, 6Li, and 7Li) in metal or ceramic matrices". A project IWO-389859 was awarded to the Ion Beam Lab (IBL) at Sandia-NM in FY18. This reports the success we had in developing and demonstrating such a method: 42 MeV Si+ 7 from the IBL' s Tandem was used to recoil these light isotopes into special detectors that separated all these isotopes by simultaneously measuring the energy and stopping power of these reoils. This technique, called Heavy Ion - Elastic Recoil Detection or HI-ERD, accurately measured the enriched 6 Li/Li-total of 0.246 +- 0.016, compared to the known value of 0.239. The isotopes 1H, 2H, 4He, 6Li and 7Li were also measured. (page intentionally left blank)
Materials that incorporate hydrogen and helium isotopes are of great interest at Sandia and throughout the NNSA and DOE. The Ion Beam Lab at SNL-NM has invented techniques using micron to mm-size MeV ion beams to recoil these light isotopes (Elastic Recoil Detection or ERD) that can very accurately make such measurements. However, there are many measurements that would benefit NW and DOE that require much better resolution, such as the distribution of H isotopes (and 3He) in individual grains of materials relevant to TPBARs, H and He-embrittlement of weapon components important to Tritium Sustainment Programs, issues with GTSs, batteries… Higher resolution would also benefit the field of materials science in general. To address these and many other issues, nm-scale lateral resolution is required. This LDRD demonstrated that neutral H atoms could be recoiled through a thin film by 70 keV electrons and detected with a Channeltron electron multiplier (CEM). The electrons were steered away from the CEM by strong permanent magnets. This proved the feasibility that the high energy electrons from a transmissionelectron- microscope-TEM can potentially be used to recoil and subsequently detect (e-ERD), quantify and map the concentration of H and He isotopes with nm resolution. This discovery could lead to a TEM-based H/He-isotope nanoprobe with 1000x higher resolution than currently available.