Electrochemical and Materials Characterization of Li-ion Cells during Long Term Cycling
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of the Electrochemical Society
Energy storage systems with Li-ion batteries are increasingly deployed to maintain a robust and resilient grid and facilitate the integration of renewable energy resources. However, appropriate selection of cells for different applications is difficult due to limited public data comparing the most commonly used off-the-shelf Li-ion chemistries under the same operating conditions. This article details a multi-year cycling study of commercial LiFePO4 (LFP), LiNixCoyAl1-x-yO2 (NCA), and LiNixMnyCo1-x-yO2 (NMC) cells, varying the discharge rate, depth of discharge (DOD), and environment temperature. The capacity and discharge energy retention, as well as the round-trip efficiency, were compared. Even when operated within manufacturer specifications, the range of cycling conditions had a profound effect on cell degradation, with time to reach 80% capacity varying by thousands of hours and cycle counts among cells of each chemistry. The degradation of cells in this study was compared to that of similar cells in previous studies to identify universal trends and to provide a standard deviation for performance. All cycling files have been made publicly available at batteryarchive.org, a recently developed repository for visualization and comparison of battery data, to facilitate future experimental and modeling efforts.
Journal of the Electrochemical Society
Li-ion batteries currently dominate electrochemical energy storage for grid-scale applications, but there are promising aqueous battery technologies on the path to commercial adoption. Though aqueous batteries are considered lower risk, they can still undergo problematic degradation processes. This perspective details the degradation that aqueous batteries can experience during normal and abusive operation, and how these processes can even lead to cascading failure. We outline methods for studying these phenomena at the material and single-cell level. Considering reliability and safety studies early in technology development will facilitate translation of emerging aqueous batteries from the lab to the field.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Power Systems
A generic constant-efficiency energy flow model is commonly used in techno-economic analyses of grid energy storage systems. In practice, charge and discharge efficiencies of energy storage systems depend on state of charge, temperature, and charge/discharge powers. Furthermore, the operating characteristics of energy storage devices are technology specific. Therefore, generic constant-efficiency energy flow models do not accurately capture the system performance. In this work, we propose to use technology-specific nonlinear energy flow models based on nonlinear operating characteristics of the storage devices. These models are incorporated into an optimization problem to find the optimal market participation of energy storage systems. We develop a dynamic programming method to solve the optimization problem and perform two case studies for maximizing the revenue of a vanadium redox flow battery (VRFB) and a Li-ion battery system in Pennsylvania New Jersey Maryland (PJM) interconnection's energy and frequency regulation markets.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.