Publications

Results 26–47 of 47
Skip to search filters

Active assembly for large-scale manufacturing of integrated nanostructures

Bachand, George B.; Orendorff, Christopher O.; McKenzie, Bonnie B.; Bunker, B.C.; Spoerke, Erik D.

Microtubules and motor proteins are protein-based biological agents that work cooperatively to facilitate the organization and transport of nanomaterials within living organisms. This report describes the application of these biological agents as tools in a novel, interdisciplinary scheme for assembling integrated nanostructures. Specifically, selective chemistries were used to direct the favorable adsorption of active motor proteins onto lithographically-defined gold electrodes. Taking advantage of the specific affinity these motor proteins have for microtubules, the motor proteins were used to capture polymerized microtubules out of suspension to form dense patterns of microtubules and microtubule bridges between gold electrodes. These microtubules were then used as biofunctionalized templates to direct the organization of functionalized nanocargo including single-walled carbon nanotubes and gold nanoparticles. This biologically-mediated scheme for nanomaterials assembly has shown excellent promise as a foundation for developing new biohybrid approaches to nanoscale manufacturing.

More Details

Assembly and actuation of nanomaterials using active biomolecules

Sasaki, Darryl Y.; Koch, Steven J.; Thayer, Gayle E.; Corwin, Alex D.; De Boer, Maarten P.; Bunker, B.C.; Bachand, George B.; Rivera, Susan B.; Gaudioso, Jennifer M.; Trent, Amanda M.; Spoerke, Erik D.

The formation and functions of living materials and organisms are fundamentally different from those of synthetic materials and devices. Synthetic materials tend to have static structures, and are not capable of adapting to the functional needs of changing environments. In contrast, living systems utilize energy to create, heal, reconfigure, and dismantle materials in a dynamic, non-equilibrium fashion. The overall goal of the project was to organize and reconfigure functional assemblies of nanoparticles using strategies that mimic those found in living systems. Active assembly of nanostructures was studied using active biomolecules to drive the organization and assembly of nanocomposite materials. In this system, kinesin motor proteins and microtubules were used to direct the transport and interactions of nanoparticles at synthetic interfaces. In addition, the kinesin/microtubule transport system was used to actively assemble nanocomposite materials capable of storing significant elastic energy. Novel biophysical measurement tools were also developed for measuring the collective force generated by kinesin motor proteins, which will provide insight on the mechanical constraints of active assembly processes. Responsive reconfiguration of nanostructures was studied in terms of using active biomolecules to mediate the optical properties of quantum dot (QD) arrays through modulation of inter-particle spacing and associated energy transfer interaction. Design rules for kinesin-based transport of a wide range of nanoscale cargo (e.g., nanocrystal quantum dots, micron-sized polymer spheres) were developed. Three-dimensional microtubule organizing centers were assembled in which the polar orientation of the microtubules was controlled by a multi-staged assembly process. Overall, a number of enabling technologies were developed over the course of this project, and will drive the exploitation of energy-driven processes to regulate the assembly, disassembly, and dynamic reorganization of nanomaterials.

More Details

Switching surface chemistry with supramolecular machines

Proposed for publication in Nanoletters.

Bunker, B.C.; Huber, Dale L.; Kelley, Michael J.

Tethered supramolecular machines represent a new class of active self-assembled monolayers in which molecular configurations can be reversibly programmed using electrochemical stimuli. We are using these machines to address the chemistry of substrate surfaces for integrated microfluidic systems. Interactions between the tethered tetracationic cyclophane host cyclobis(paraquat-p-phenylene) and dissolved {pi}-electron-rich guest molecules, such as tetrathiafulvalene, have been reversibly switched by oxidative electrochemistry. The results demonstrate that surface-bound supramolecular machines can be programmed to adsorb or release appropriately designed solution species for manipulating surface chemistry.

More Details

Adsorption kinetics of 1-alkanethiols on hydrogenated Ge(111)

Langmuir

Kosuri, Madhava R.; Cone, Roya; Li, Qiming; Han, Sang M.; Bunker, B.C.; Mayer, T.M.

We have investigated the liquid-phase self-assembly of 1-alkanethiols (HS(CH2)n-1CH3, n = 8, 16, and 18) on hydrogenated Ge(111), using attenuated total reflection Fourier transform infrared spectroscopy as well as water contact angle measurements. The infrared absorbance of C-H stretching modes of alkanethiolates on Ge, in conjunction with water contact angle measurements, demonstrates that the final packing density is a function of alkanethiol concentration in 2-propanol and its chain length. High concentration and long alkyl chain increase the steady-state surface coverage of alkanethiolates. A critical chain length exists between n = 8 and 16, above which the adsorption kinetics is comparable for all long alkyl chain 1-alkanethiols. The steady-state coverage of hexadecanethiolates, representing long-chain alkanethiolates, reaches a maximum at approximately 5.9 × 1014 hexadecanethiolates/cm2 in 1 M solution. The characteristic time constant to reach a steady state also decreases with increasing chain length. This chain length dependence is attributed to the attractive chain-to-chain interaction in long-alkyl-chain self-assembled monolayers, which reduces the desorption-to-adsorption rate ratio (kd/ka). We also report the adsorption and desorption rate constants (ka and kd) of 1-hexadecanethiol on hydrogenated Ge(111) at room temperature. The alkanethiol adsorption is a two-step process following a first-order Langmuir isotherm: (1) fast adsorption with ka = 2.4 ± 0.2 cm3/(mol s) and kd = (8.2 ± 0.5) × 10-6 s-1; (2) slow adsorption with ka = 0.8 ± 0.5 cm3/(mol s) and kd = (3 ± 2) × 10-6 s-1.

More Details

Vapor-Phase Adsorption Kinetics of 1-Decene on H-Terminated Si(100)

Langmuir

Kosuri, Madhava R.; Gerung, Henry; Li, Qiming; Han, Sang M.; Bunker, B.C.; Mayer, T.M.

We have investigated in situ and in real time vapor-phase self-assembly of 1-decene on Si, using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIRS). The adsorption of 1-decene on hydrogenated Si(100) results in a decane-terminated hydrophobic surface, indicated by the sessile-drop water contact angle at 107 ± 2°. This maximum contact angle is achieved at 160 °C under 30 mTorr of vapor-phase 1-decene. The fractional surface coverage of decane, calculated from the IR absorbance of C-H stretching vibrational modes near 2900 cm-1, follows a Langmuir isotherm. The absolute surface coverage calculated from the IR absorbance saturates at 3.2 × 1014 cm-2. On the basis of this isotherm, the empirical rate constant (k2′) that governs the rate-limiting step in 1-decene adsorption on HF-treated Si(100) is (3.3 ± 0.7) × 10-2 min-1. The thickness and cant angle of the decane monolayer at the saturation coverage are calculated from angle resolved X-ray photoelectron spectroscopy (AR-XPS). The calculated thickness ranges from 8.4 to 18 Å due to the uncertainty in the attenuation lengths of C(1s) and Si(2p) photoelectrons through the decane layer. For the same uncertainty, the calculated cant angle ranges from 0 to 55°. Spectroscopic ellipsometry is independently used to approximate the film thickness at 16 Å. Monitoring the decane monolayer over a period of 50 days using AR-XPS indicates that the Si surface underneath the decane monolayer gets oxidized with time, leading to the degradation of the decane layer.

More Details

Microtubule-templated biomimetic mineralization of lepidocrocite

Proposed for publication in Advanced Functional Materials.

Bunker, B.C.; Boal, Andrew B.; Headley, Thomas J.; Tissot, Ralph G.; Bunker, B.C.

Protein microtubules (MTs) 25 nm in diameter and tens of micrometers long have been used as templates for the biomimetic mineralization of FeOOH. Exposure of MTs to anaerobic aqueous solutions of Fe{sup 2+} buffered to neutral pH followed by aerial oxidation leads to the formation of iron oxide coated MTs. The iron oxide layer was found to grow via a two-step process: initially formed 10-30 nm thick coatings were found to be amorphous in structure and comprised of several iron-containing species. Further growth resulted in MTs coated with highly crystalline layers of lepidocrocite with a controllable thickness of up to 125 nm. On the micrometer size scale, these coated MTs were observed to form large, irregular bundles containing hundreds of individually coated MTs. Iron oxide grew selectively on the MT surface, a result of the highly charged MT surface that provided an interface favorable for iron oxide nucleation. This result illustrates that MTs can be used as scaffolds for the in-situ production of high-aspect-ratio inorganic nanowires.

More Details

Switchable Hydrophobic-Hydrophilic Surfaces

Bunker, B.C.; Huber, Dale L.; Kent, Michael S.; Yim, Hyun Y.; Curro, John G.; Manginell, Ronald P.; Mendez, Sergio M.

Tethered films of poly n-isopropylacrylamide (PNIPAM) films have been developed as materials that can be used to switch the chemistry of a surface in response to thermal activation. In water, PNIPAM exhibits a thermally-activated phase transition that is accompanied by significant changes in polymer volume, water contact angle, and protein adsorption characteristics. New synthesis routes have been developed to prepare PNIPAM films via in-situ polymerization on self-assembled monolayers. Swelling transitions in tethered films have been characterized using a wide range of techniques including surface plasmon resonance, attenuated total reflectance infrared spectroscopy, interfacial force microscopy, neutron reflectivity, and theoretical modeling. PNIPAM films have been deployed in integrated microfluidic systems. Switchable PNIPAM films have been investigated for a range of fluidic applications including fluid pumping via surface energy switching and switchable protein traps for pre-concentrating and separating proteins on microfluidic chips.

More Details

The influence of coating structure on micromachine stiction

Tribology Letters

Kushmerick, J.G.; Hankins, M.G.; De Boer, Maarten P.; Clews, Peggy J.; Carpick, R.W.; Bunker, B.C.

Stiction and friction in micromachines is commonly inhibited through the use of silane coupling agents such as 1H-, 1H-, 2H-, 2H-perfluorodecyltrichlorosilane (FDTS). FDTS coatings have allowed micromachine parts processed in water to be released without debilitating capillary adhesion occurring. These coatings are frequently considered as densely-packed monolayers, well-bonded to the substrate. In this paper, it is demonstrated that FDTS coatings can exhibit complex nanoscale structures, which control whether micromachine parts release or not. Surface images obtained via atomic force microscopy reveal that FDTS coating solutions can generate micellar aggregates that deposit on substrate surfaces. Interferometric imaging of model beam structures shows that stiction is high when the droplets are present and low when only monolayers are deposited. As the aggregate thickness (tens of nanometers) is insufficient to bridge the 2 μm gap under the beams, the aggregates appear to promote beam-substrate adhesion by changing the wetting characteristics of coated surfaces. Contact angle measurements and condensation figure experiments have been performed on surfaces and under coated beams to quantify the changes in interfacial properties that accompany different coating structures. These results may explain the irreproducibility that is often observed with these films.

More Details
Results 26–47 of 47
Results 26–47 of 47