Publications

Results 51–97 of 97
Skip to search filters

Meeting thin film design and production challenges for laser damage resistant optical coatings at the Sandia Large Optics Coating Operation

Proceedings of SPIE - The International Society for Optical Engineering

Bellum, John; Kletecka, Damon; Rambo, Patrick K.; Smith, Ian C.; Kimmel, Mark W.; Schwarz, Jens S.; Geissel, Matthias; Copeland, Guild; Atherton, B.W.; Smith, Douglas; Smith, Ian C.; Khripin, Constantine

Sandia's Large Optics Coating Operation provides laser damage resistant optical coatings on meter-class optics required for the ZBacklighter Terawatt and Petawatt lasers. Deposition is by electron beam evaporation in a 2.3 m x 2.3 m x 1.8 m temperature controlled vacuum chamber. Ion assisted deposition (IAD) is optional. Coating types range from antireflection (AR) to high reflection (HR) at S and P polarizations for angle of incidence (AOI) from 0° to 47°. This paper reports progress in meeting challenges in design and deposition of these high laser induced damage threshold (LIDT) coatings. Numerous LIDT tests (NIF-MEL protocol, 3.5 ns laser pulses at 1064 nm and 532 nm) on the coatings confirm that they are robust against laser damage. Typical LIDTs are: at 1064 nm, 45° AOI, Ppol, 79 J/cm2 (IAD 32 layer HR coating) and 73 J/cm2 (non-IAD 32 layer HR coating); at 1064 nm, 32° AOI, 82 J/cm2 (Ppol) and 55 J/cm2 (Spol ) (non-IAD 32 layer HR coating); and at 532 nm, Ppol, 16 J/cm2 (25° AOI) and 19 J/cm2 (45° AOI) (IAD 50 layer HR coating). The demands of meeting challenging spectral, AOI and LIDT performances are highlighted by an HR coating required to provide R > 99.6% reflectivity in Ppol and Spol over AOIs from 24° to 47° within ∼ 1% bandwidth at both 527 nm and 1054 nm. Another issue is coating surface roughness. For IAD of HR coatings, elevating the chamber temperature to ∼ 120°C and turning the ion beam off during the pause in deposition between layers reduce the coating surface roughness compared to runs at lower temperatures with the ion beam on continuously. Atomic force microscopy and optical profilometry confirm the reduced surface roughness for these IAD coatings, and tests show that their LIDTs remain high. © 2009 Copyright SPIE - The International Society for Optical Engineering.

More Details

The refurbished Z facility : capabilities and recent experiments

Matzen, M.K.; Long, Finis W.; McKee, George R.; Mehlhorn, Thomas A.; Schneider, Larry X.; Struve, Kenneth W.; Stygar, William A.; Weinbrecht, Edward A.; Atherton, B.W.; Cuneo, M.E.; Donovan, Guy L.; Hall, Clint A.; Herrmann, Mark H.; Kiefer, Mark L.; Leeper, Ramon J.; Leifeste, Gordon T.

The Z Refurbishment Project was completed in September 2007. Prior to the shutdown of the Z facility in July 2006 to install the new hardware, it provided currents of {le} 20 MA to produce energetic, intense X-ray sources ({approx} 1.6 MJ, > 200 TW) for performing high energy density science experiments and to produce high magnetic fields and pressures for performing dynamic material property experiments. The refurbishment project doubled the stored energy within the existing tank structure and replaced older components with modern, conventional technology and systems that were designed to drive both short-pulse Z-pinch implosions and long-pulse dynamic material property experiments. The project goals were to increase the delivered current for additional performance capability, improve overall precision and pulse shape flexibility for better reproducibility and data quality, and provide the capacity to perform more shots. Experiments over the past year have been devoted to bringing the facility up to full operating capabilities and implementing a refurbished suite of diagnostics. In addition, we have enhanced our X-ray backlighting diagnostics through the addition of a two-frame capability to the Z-Beamlet system and the addition of a high power laser (Z-Petawatt). In this paper, we will summarize the changes made to the Z facility, highlight the new capabilities, and discuss the results of some of the early experiments.

More Details

Z-Beamlet: a multi-KJ TW-class laser for backlit x-radiography applications on the Z-Accelerator

Atherton, B.W.; Gonzales, Rita A.; Gurrieri, Thomas G.; Herrmann, Mark H.; Mulville, Thomas D.; Neely, Kelly A.; Rambo, Patrick K.; Rovang, Dean C.; Ruggles, Larry R.; Smith, Ian C.; Schwarz, Jens S.; Simpson, Walter W.; Sinars, Daniel S.; Speas, Christopher S.; Tafoya-Porras, Belinda T.; Wenger, D.F.; Young, Ralph W.; Adams, Richard G.; Bennett, Guy R.; Campbell, David V.; Carroll, Malcolm; Claus, Liam D.; Edens, Aaron E.; Geissel, Matthias G.

Abstract not provided.

X-ray optics on the Z-Accelerator backlit with the Z-Beamlet Laser & Z-Petawatt Laser systems

Gonzales, Rita A.; Gurrieri, Thomas G.; Herrmann, Mark H.; Mulville, Thomas D.; Neely, Kelly A.; Rambo, Patrick K.; Rovang, Dean C.; Ruggles, Larry R.; Schwarz, Jens S.; Adams, Richard G.; Simpson, Walter W.; Sinars, Daniel S.; Smith, Ian C.; Speas, Christopher S.; Tafoya-Porras, Belinda T.; Wenger, D.F.; Young, Ralph W.; Edens, Aaron E.; Atherton, B.W.; Bennett, Guy R.; Campbell, David V.; Carroll, Malcolm; Claus, Liam D.; Geissel, Matthias G.

Abstract not provided.

1- and 2-frame monochromatic x-ray imaging of NIF-like capsules on Z and future higher-energy higher-resolution 2- & 4-frame x-radiography plans for ZR

Bennett, Guy R.; Campbell, David V.; Claus, Liam D.; Foresi, James S.; Johnson, Drew J.; Jones, Michael J.; Keller, Keith L.; Leifeste, Gordon T.; McPherson, Leroy A.; Mulville, Thomas D.; Neely, Kelly A.; Sinars, Daniel S.; Herrmann, Mark H.; Rambo, Patrick K.; Rovang, Dean C.; Ruggles, Larry R.; Simpson, Walter W.; Speas, Christopher S.; Wenger, D.F.; Smith, Ian C.; Cuneo, M.E.; Adams, Richard G.; Atherton, B.W.; Barnard, Wilson J.; Beutler, David E.; Burr, Robert A.

Abstract not provided.

High-power optical parametric chirped-pulse amplifier system with 1.6-μm signal and 1.064-μm pump

Optics InfoBase Conference Papers

Rudd, J.V.; Law, R.J.; Atherton, B.W.; Luk, Ting S.; Cameron, Stewart M.

Optical parametric chirped-pulse amplifiers utilizing a 300-ps Nd:YAG pump system, a tunable 1.6-μm fiber signal, and KNbO3, KTA, RTP, or BBO nonlinear crystals were designed and built. Gain >109, and peak powers >30GW were obtained. © 2005 Optical Society of America.

More Details
Results 51–97 of 97
Results 51–97 of 97