Challenge Problem
Abstract not provided.
Abstract not provided.
Abstract not provided.
The goal of this project is to develop and execute methods for characterizing uncertainty in data products that are deve loped and distributed by the DOE Consequence Management (CM) Program. A global approach to this problem is necessary because multiple sources of error and uncertainty from across the CM skill sets contribute to the ultimate p roduction of CM data products. This report presents the methods used to develop a probabilistic framework to characterize this uncertainty and provides results for an uncertainty analysis for a study scenario analyzed using this framework.
Renewable Energy
Efficient design of wave energy converters requires an accurate understanding of expected loads and responses during the deployment lifetime of a device. A study has been conducted to better understand best-practices for prediction of design responses in a wave energy converter. A case-study was performed in which a simplified wave energy converter was analyzed to predict several important device design responses. The application and performance of a full long-term analysis, in which numerical simulations were used to predict the device response for a large number of distinct sea states, was studied. Environmental characterization and selection of sea states for this analysis at the intended deployment site were performed using principle-components analysis. The full long-term analysis applied here was shown to be stable when implemented with a relatively low number of sea states and convergent with an increasing number of sea states. As the number of sea states utilized in the analysis was increased, predicted response levels did not change appreciably. However, uncertainty in the response levels was reduced as more sea states were utilized.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This goal of this project is to address the current inability to assess the overall error and uncertainty of data products developed and distributed by DOE’s Consequence Management (CM) Program.
This report describes the methods, results, and conclusions of the analysis of 11 scenarios defined to exercise various options available in the xLPR (Extremely Low Probability of Rupture) Version 2 .0 code. The scope of the scenario analysis is three - fold: (i) exercise the various options and components comprising xLPR v2.0 and defining each scenario; (ii) develop and exercise methods for analyzing and interpreting xLPR v2.0 outputs ; and (iii) exercise the various sampling options available in xLPR v2.0. The simulation workflow template developed during the course of this effort helps to form a basis for the application of the xLPR code to problems with similar inputs and probabilistic requirements and address in a systematic manner the three points covered by the scope.
This goal of this project is to address the current inability to assess the overall error and uncertainty of data products developed and distributed by DOE’s Consequence Management (CM) Program. This is a widely recognized shortfall, the resolution of which would provide a great deal of value and defensibility to the analysis results, data products, and the decision making process that follows this work. A global approach to this problem is necessary because multiple sources of error and uncertainty contribute to the ultimate production of CM data products. Therefore, this project will require collaboration with subject matter experts across a wide range of FRMAC skill sets in order to quantify the types of uncertainty that each area of the CM process might contain and to understand how variations in these uncertainty sources contribute to the aggregated uncertainty present in CM data products. The ultimate goal of this project is to quantify the confidence level of CM products to ensure that appropriate public and worker protections decisions are supported by defensible analysis.
Abstract not provided.