Geologic Disposal Safety Assessment Framework is a state-of-the-art simulation software toolkit for probabilistic post-closure performance assessment of systems for deep geologic disposal of nuclear waste developed by the United States Department of Energy. This paper presents a generic reference case and shows how it is being used to develop and demonstrate performance assessment methods within the Geologic Disposal Safety Assessment Framework that mitigate some of the challenges posed by high uncertainty and limited computational resources. Variance-based global sensitivity analysis is applied to assess the effects of spatial heterogeneity using graph-based summary measures for scalar and time-varying quantities of interest. Behavior of the system with respect to spatial heterogeneity is further investigated using ratios of water fluxes. This analysis shows that spatial heterogeneity is a dominant uncertainty in predictions of repository performance which can be identified in global sensitivity analysis using proxy variables derived from graph descriptions of discrete fracture networks. New quantities of interest defined using water fluxes proved useful for better understanding overall system behavior.
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling. These priorities are directly addressed in the SFWST Geologic Disposal Safety Assessment (GDSA) control account, which is charged with developing a geologic repository system modeling and analysis capability, and the associated software, GDSA Framework, for evaluating disposal system performance for nuclear waste in geologic media. GDSA Framework is supported by SFWST Campaign and its predecessor the Used Fuel Disposition (UFD) campaign.
High-quality factor resonant cavities are challenging structures to model in electromagnetics owing to their large sensitivity to minute parameter changes. Therefore, uncertainty quantification (UQ) strategies are pivotal to understanding key parameters affecting the cavity response. We discuss here some of these strategies focusing on shielding effectiveness (SE) properties of a canonical slotted cylindrical cavity that will be used to develop credibility evidence in support of predictions made using computational simulations for this application.
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and highlevel nuclear waste (HLW). A high priority for SFWST disposal R&D is disposal system modeling (DOE 2012, Table 6; Sevougian et al. 2019). The SFWST Geologic Disposal Safety Assessment (GDSA) work package is charged with developing a disposal system modeling and analysis capability for evaluating generic disposal system performance for nuclear waste in geologic media.
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling. These priorities are directly addressed in the SFWST Geologic Disposal Safety Assessment (GDSA) control account, which is charged with developing a geologic repository system modeling and analysis capability, and the associated software, GDSA Framework, for evaluating disposal system performance for nuclear waste in geologic media. GDSA Framework is supported by SFWST Campaign and its predecessor the Used Fuel Disposition (UFD) campaign. This report fulfills the GDSA Uncertainty and Sensitivity Analysis Methods work package (SF-21SN01030404) level 3 milestone, Uncertainty and Sensitivity Analysis Methods and Applications in GDSA Framework (FY2021) (M3SF-21SN010304042). It presents high level objectives and strategy for development of uncertainty and sensitivity analysis tools, demonstrates uncertainty quantification (UQ) and sensitivity analysis (SA) tools in GDSA Framework in FY21, and describes additional UQ/SA tools whose future implementation would enhance the UQ/SA capability of GDSA Framework. This work was closely coordinated with the other Sandia National Laboratory GDSA work packages: the GDSA Framework Development work package (SF-21SN01030405), the GDSA Repository Systems Analysis work package (SF-21SN01030406), and the GDSA PFLOTRAN Development work package (SF-21SN01030407). This report builds on developments reported in previous GDSA Framework milestones, particularly M3SF 20SN010304032.
This report describes the credibility activities undertaken in support of Gemma code development in FY20, which include Verification & Validation (V&V), Uncertainty Quantification (UQ), and Credibility process application. The main goal of these activities is to establish capabilities and process frameworks that can be more broadly applied to new and more advanced problems as the Gemma code development effort matures. This will provide Gemma developers and analysts with the tools needed to generate credibility evidence in support of Gemma predictions for future use cases. The FY20 Gemma V&V/UQ/Credibility activities described in this report include experimental uncertainty analysis, the development and use of methods for optimal design of computer experiments, and the development of a framework for validation. These initial activities supported the development of broader credibility planning for Gemma that continued into FY21.
Environmental contours of extreme sea states are often utilized for the purposes of reliability-based offshore design. Many methods have been proposed to estimate environmental contours of extreme sea states, including, but not limited to, the traditional inverse first-order reliability method (I-FORM) and subsequent modifications, copula methods, and Monte Carlo methods. These methods differ in terms of both the methodology selected for defining the joint distribution of sea state parameters and in the method used to construct the environmental contour from the joint distribution. It is often difficult to compare the results of proposed methods to determine which method should be used for a particular application or geographical region. The comparison of the predictions from various contour methods at a single site and across many sites is important to making environmental contours of extreme sea states useful in practice. The goal of this paper is to develop a comparison framework for evaluating methods for developing environmental contours of extreme sea states. This paper develops generalized metrics for comparing the performance of contour methods to one another across a collection of study sites, and applies these metrics and methods to develop conclusions about trends in the wave resource across geographic locations, as demonstrated for a pilot dataset. These proposed metrics and methods are intended to judge the environmental contours themselves relative to other contour methods, and are thus agnostic to a specific device, structure, or field of application. The metrics developed and applied in this paper include measures of predictive accuracy, physical validity, and aggregated temporal performance that can be used to both assess contour methods and provide recommendations for the use of certain methods in various geographical regions. The application and aggregation of the metrics proposed in this paper outline a comparison framework for environmental contour methods that can be applied to support design analysis workflows for offshore structures. This comparison framework could be extended in future work to include additional metrics of interest, potentially including those to address issues pertinent to a specific application area or analysis discipline, such as metrics related to structural response across contour methods or additional physics-based metrics based on wave dynamics.
An interlaboratory effort has developed a probabilistic framework to characterize uncertainty in data products that are developed by the US Department of Energy Consequence Management Program in support of the Federal Radiological Monitoring and Assessment Center. The purpose of this paper is to provide an overview of the probability distributions of input variables and the statistical methods used to propagate and quantify the overall uncertainty of the derived response levels that are used as contours on data products due to the uncertainty in input parameters. Uncertainty analysis results are also presented for several study scenarios. This paper includes an example data product to illustrate the potential real-world implications of incorporating uncertainty analysis results into data products that inform protective action decisions. Data product contours that indicate areas where public protection actions may be warranted can be customized to an acceptable level of uncertainty. The investigators seek feedback from decision makers and the radiological emergency response community to determine how uncertainty information can be used to support the protective action decision-making process and how it can be presented on data products.