The realisation of a GaN high voltage vertical p-n diode operating at >3.9 kV breakdown with a specific on-resistance <0.9 mΩ cm2 is reported. Diodes achieved a forward current of 1 A for on-wafer, DC measurements, corresponding to a current density >1.4 kA/cm2. An effective critical electric field of 3.9 MV/cm was estimated for the devices from analysis of the forward and reverse current-voltage characteristics. This suggests that the fundamental limit to the GaN critical electric field is significantly greater than previously believed.
Control of electric fields with edge terminations is critical to maximize the performance of high-power electronic devices. While a variety of edge termination designs have been proposed, the optimization of such designs is challenging due to many parameters that impact their effectiveness. While modeling has recently allowed new insight into the detailed workings of edge terminations, the experimental verification of the design effectiveness is usually done through indirect means, such as the impact on breakdown voltages. In this letter, we use scanning photocurrent microscopy to spatially map the electric fields in vertical GaN p-n junction diodes in operando. We reveal the complex behavior of seemingly simple edge termination designs, and show how the device breakdown voltage correlates with the electric field behavior. Modeling suggests that an incomplete compensation of the p-type layer in the edge termination creates a bilayer structure that leads to these effects, with variations that significantly impact the breakdown voltage.
Vertical GaN power diodes with a bilayer edge termination (ET) are demonstrated. The GaN p-n junction is formed on a low threading dislocation defect density (104 - 105 cm-2) GaN substrate, and has a 15-μm-thick n-type drift layer with a free carrier concentration of 5 × 1015 cm-3. The ET structure is formed by N implantation into the p+-GaN epilayer just outside the p-type contact to create compensating defects. The implant defect profile may be approximated by a bilayer structure consisting of a fully compensated layer near the surface, followed by a 90% compensated (p) layer near the n-type drift region. These devices exhibit avalanche breakdown as high as 2.6 kV at room temperature. Simulations show that the ET created by implantation is an effective way to laterally distribute the electric field over a large area. This increases the voltage at which impact ionization occurs and leads to the observed higher breakdown voltages.
Illumination by a narrow-band laser has been shown to enable photoelectrochemical (PEC) etching of InGaN thin films into quantum dots with sizes controlled by the laser wavelength. Here, we investigate and elucidate the influence of solution pH on such quantum-size-controlled PEC etch process. We find that although a pH above 5 is often used for PEC etching of GaN-based materials, oxides (In2O3 and/or Ga2O3) form which interfere with quantum dot formation. At pH below 3, however, oxide-free QDs with self-terminated sizes can be successfully realized.
We report here the characteristics of photoelectrochemical (PEC) etching of epitaxial InGaN semiconductor thin films using a narrowband laser with a linewidth less than ∼1 nm. In the initial stages of PEC etching, when the thin film is flat, characteristic voltammogram shapes are observed. At low photo-excitation rates, voltammograms are S-shaped, indicating the onset of a voltage-independent rate-limiting process associated with electron-hole-pair creation and/or annihilation. At high photo-excitation rates, voltammograms are superlinear in shape, indicating, for the voltage ranges studied here, a voltage-dependent rate-limiting process associated with surface electrochemical oxidation. As PEC etching proceeds, the thin film becomes rough at the nanoscale, and ultimately the self-limiting etch kinetics lead to an ensemble of nanoparticles. This change in InGaN film volume and morphology leads to a characteristic dependence of PEC etch rate on time: an incubation time, followed by a rise, then a peak, then a slow decay.
InGaN/AlGaN/GaN-based multiple quantum wells (MQWs) with AlGaN interlayers (ILs) are investigated, specifically to examine the fundamental mechanisms behind their increased radiative efficiency at wavelengths of 530-590 nm. The AlzGa1-zN (z∼0.38) IL is ∼1-2 nm thick, and is grown after and at the same growth temperature as the ∼3 nm thick InGaN quantum well (QW). This is followed by an increase in temperature for the growth of a ∼10 nm thick GaN barrier layer. The insertion of the AlGaN IL within the MQW provides various benefits. First, the AlGaN IL allows for growth of the InxGa1-xN QW well below typical growth temperatures to achieve higher x (up to ∼0.25). Second, annealing the IL capped QW prior to the GaN barrier growth improves the AlGaN IL smoothness as determined by atomic force microscopy, improves the InGaN/AlGaN/GaN interface quality as determined from scanning transmission electron microscope images and x-ray diffraction, and increases the radiative efficiency by reducing nonradiative defects as determined by time-resolved photoluminescence measurements. Finally, the AlGaN IL increases the spontaneous and piezoelectric polarization induced electric fields acting on the InGaN QW, providing an additional red-shift to the emission wavelength as determined by Schrodinger-Poisson modeling and fitting to the experimental data. The relative impact of increased indium concentration and polarization fields on the radiative efficiency of MQWs with AlGaN ILs is explored along with implications to conventional longer wavelength emitters.
We demonstrate a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10 nm size regime: quantum-size-controlled photoelectrochemical (QSC-PEC) etching. We show that quantum dots (QDs) can be QSC-PEC-etched from epitaxial InGaN thin films using narrowband laser photoexcitation, and that the QD sizes (and hence bandgaps and photoluminescence wavelengths) are determined by the photoexcitation wavelength. Low-temperature photoluminescence from ensembles of such QDs have peak wavelengths that can be tunably blue shifted by 35 nm (from 440 to 405 nm) and have line widths that narrow by 3 times (from 19 to 6 nm).