Publications

Results 26–39 of 39
Skip to search filters

A global perspective on energy markets and economic integration

Baker, Arnold B.

What will be the effect of Iraqi domestic instability on Iraqi oil production Negotiations for Iranian nuclear technology on Iranian oil supplies Saudi commitment to expanded oil production President Putin's policies on Russian oil and natural gas supplies President Chavez's policies on Venezuelan oil supplies Instability in Nigeria Higher oil prices on world economic growth Effect of economic growth on oil demand in China, India, U.S., etc. Higher oil prices on non-OPEC oil supplies

More Details

The hydrogen futures simulation model (H2Sim) user's guide

Drennen, Thomas E.; Baker, Arnold B.

The Hydrogen Futures Simulation Model (H{sub 2}Sim) is a high level, internally consistent, strategic tool for exploring the options of a hydrogen economy. Once the user understands how to use the basic functions, H{sub 2}Sim can be used to examine a wide variety of scenarios, such as testing different options for the hydrogen pathway, altering key assumptions regarding hydrogen production, storage, transportation, and end use costs, and determining the effectiveness of various options on carbon mitigation. This User's Guide explains how to run the model for the first time user.

More Details

Electricity Generation Cost Simulation Model (GenSim)

Drennen, Thomas E.; Drennen, Thomas E.; Baker, Arnold B.

The Electricity Generation Cost Simulation Model (GenSim) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration of a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercuty. Two different data sets are included in the model; one from the US. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emissions trade-offs. The base case results, using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax credit of 1.8cents/kwhr.

More Details

Regional Dynamic Simulation Modeling and Analysis of Integrated Energy Futures

Malczynski, Leonard A.; Beyeler, Walter E.; Conrad, Stephen H.; Harris, David H.; Rexroth, Paul E.; Baker, Arnold B.

The Global Energy Futures Model (GEFM) is a demand-based, gross domestic product (GDP)-driven, dynamic simulation tool that provides an integrated framework to model key aspects of energy, nuclear-materials storage and disposition, environmental effluents from fossil and non fossil energy and global nuclear-materials management. Based entirely on public source data, it links oil, natural gas, coal, nuclear and renewable energy dynamically to greenhouse-gas emissions and 12 other measures of environmental impact. It includes historical data from 1990 to 2000, is benchmarked to the DOE/EIA/IEO 2001 [5] Reference Case for 2000 to 2020, and extrapolates energy demand through the year 2050. The GEFM is globally integrated, and breaks out five regions of the world: United States of America (USA), the Peoples Republic of China (China), the former Soviet Union (FSU), the Organization for Economic Cooperation and Development (OECD) nations excluding the USA (other industrialized countries), and the rest of the world (ROW) (essentially the developing world). The GEFM allows the user to examine a very wide range of ''what if'' scenarios through 2050 and to view the potential effects across widely dispersed, but interrelated areas. The authors believe that this high-level learning tool will help to stimulate public policy debate on energy, environment, economic and national security issues.

More Details

Dynamic Simulation Model of the National Security Consequences from Energy Supply Disruptions

Malczynski, Leonard A.; Paananen, Orman H.; Harris, David H.; Baker, Arnold B.

Recent terrorist attacks in the United States have increased concerns about potential national security consequences from energy supply disruptions. The purpose of this Laboratory Directed Research & Development (LDRD) is to develop a high-level dynamic simulation model that would allow policy makers to explore the national security consequences of major US. energy supply disruptions, and to do so in a way that would integrate energy, economic and environmental components. The model allows exploration of potential combinations of demand-driven energy supplies that meet chosen policy objectives, including: Mitigating economic losses, measured in national economic output and employment levels, due to terrorist activity or forced outages of the type seen in California; Control of greenhouse gas levels and growth rates; and Moderating US. energy import requirements. This work has built upon the Sandia US. Energy and greenhouse Gas Model (USEGM) by integrating a macroeconomic input-output framework into the model, adding the capability to assess the potential economic impact of energy supply disruptions and the associated national security issues. The economic impacts of disruptions are measured in terms of lost US. output (e.g., GDP, sectoral output) and lost employment, and are assessed either at a broad sectoral level (3 sectors) or at a disaggregated level (52 sectors). In this version of the model, physical energy disruptions result in quantitative energy shortfalls, and energy prices are not permitted to rise to clear the markets.

More Details

A Scalable Systems Approach for Critical Infrastructure Security

Baker, Arnold B.; Woodall, Tommy D.; Hines, W.C.; Hutchinson, Robert L.; Eagan, Robert J.; Moonka, Ajoy K.; Falcone, Patricia K.; Swinson, Mark S.; Harris, Joe M.; Webb, Erik K.; Herrera, Gilbert V.

Critical infrastructures underpin the domestic security, health, safety and economic well being of the United States. They are large, widely dispersed, mostly privately owned systems operated under a mixture of federal, state and local government departments, laws and regulations. While there currently are enormous pressures to secure all aspects of all critical infrastructures immediately, budget realities limit available options. The purpose of this study is to provide a clear framework for systematically analyzing and prioritizing resources to most effectively secure US critical infrastructures from terrorist threats. It is a scalable framework (based on the interplay of consequences, threats and vulnerabilities) that can be applied at the highest national level, the component level of an individual infrastructure, or anywhere in between. This study also provides a set of key findings and a recommended approach for framework application. In addition, this study develops three laptop computer-based tools to assist with framework implementation-a Risk Assessment Credibility Tool, a Notional Risk Prioritization Tool, and a County Prioritization tool. This study's tools and insights are based on Sandia National Laboratories' many years of experience in risk, consequence, threat and vulnerability assessments, both in defense- and critical infrastructure-related areas.

More Details

Nuclear energy and security

Blejwas, Thomas E.; Sanders, Thomas L.; Eagan, Robert J.; Baker, Arnold B.

Nuclear power is an important and, the authors believe, essential component of a secure nuclear future. Although nuclear fuel cycles create materials that have some potential for use in nuclear weapons, with appropriate fuel cycles, nuclear power could reduce rather than increase real proliferation risk worldwide. Future fuel cycles could be designed to avoid plutonium production, generate minimal amounts of plutonium in proliferation-resistant amounts or configurations, and/or transparently and efficiently consume plutonium already created. Furthermore, a strong and viable US nuclear infrastructure, of which nuclear power is a large element, is essential if the US is to maintain a leadership or even participatory role in defining the global nuclear infrastructure and controlling the proliferation of nuclear weapons. By focusing on new fuel cycles and new reactor technologies, it is possible to advantageously burn and reduce nuclear materials that could be used for nuclear weapons rather than increase and/or dispose of these materials. Thus, the authors suggest that planners for a secure nuclear future use technology to design an ideal future. In this future, nuclear power creates large amounts of virtually atmospherically clean energy while significantly lowering the threat of proliferation through the thoughtful use, physical security, and agreed-upon transparency of nuclear materials. The authors must develop options for policy makers that bring them as close as practical to this ideal. Just as Atoms for Peace became the ideal for the first nuclear century, they see a potential nuclear future that contributes significantly to power for peace and prosperity.

More Details
Results 26–39 of 39
Results 26–39 of 39