Computed Tomography (CT) is a well established technique, particularly in medical imaging, but also applied in Synthetic Aperture Radar (SAR) imaging. Basic CT imaging via back-projection is treated in many texts, but often with insufficient detail to appreciate subtleties such as the role of non-uniform sampling densities. Herein are given some details often neglected in many texts.
Coherent Change Detection (CCD) with Synthetic Aperture Radar (SAR) images is a technique whereby very subtle temporal changes can be discerned in a target scene. However, optimal performance requires carefully matching data collection geometries and adjusting the processing to compensate for imprecision in the collection geometries. Tolerances in the precision of the data collection are discussed, and anecdotal advice is presented for optimum CCD performance. Processing considerations are also discussed.
Nonlinear FM (NLFM) waveforms offer a radar matched filter output with inherently low range sidelobes. This yields a 1-2 dB advantage in Signal-to-Noise Ratio over the output of a Linear FM (LFM) waveform with equivalent sidelobe filtering. This report presents details of processing NLFM waveforms in both range and Doppler dimensions, with special emphasis on compensating intra-pulse Doppler, often cited as a weakness of NLFM waveforms.
Wideband radar signals are problematic for phased array antennas. Wideband radar signals can be generated from series or groups of narrow-band signals centered at different frequencies. An equivalent wideband LFM chirp can be assembled from lesser-bandwidth chirp segments in the data processing. The chirp segments can be transmitted as separate narrow-band pulses, each with their own steering phase operation. This overcomes the problematic dilemma of steering wideband chirps with phase shifters alone, that is, without true time-delay elements.
Nonlinear FM waveforms offer a radar matched filter output with inherently low range sidelobes. This yields a 1-2 dB advantage in Signal-to-Noise Ratio over the output of a Linear FM waveform with equivalent sidelobe filtering. This report presents design and implementation techniques for Nonlinear FM waveforms.
Pulsed Radar systems suffer range ambiguities, that is, echoes from pulses transmitted at different times arrive at the receiver simultaneously. Conventional mitigation techniques are not always adequate. However, pulse modulation schemes exist that allow separation of ambiguous ranges in Doppler space, allowing easy filtering of problematic ambiguous ranges.
The effects of a non-uniform antenna beam are sometimes visible in Synthetic Aperture Radar (SAR) images. This might be due to near-range operation, wide scenes, or inadequate antenna pointing accuracy. The effects can be mitigated in the SAR image by fitting very a simple model to the illumination profile and compensating the pixel brightness accordingly, in an automated fashion. This is accomplished without a detailed antenna pattern calibration, and allows for drift in the antenna beam alignments.
The performance of a Synthetic Aperture Radar (SAR) system depends on a variety of factors, many which are interdependent in some manner. It is often difficult to ''get your arms around'' the problem of ascertaining achievable performance limits, and yet those limits exist and are dictated by physics, no matter how bright the engineer tasked to generate a system design. This report identifies and explores those limits, and how they depend on hardware system parameters and environmental conditions. Ultimately, this leads to a characterization of parameters that offer optimum performance for the overall SAR system. For example, there are definite optimum frequency bands that depend on weather conditions and range, and minimum radar PRF for a fixed real antenna aperture dimension is independent of frequency. While the information herein is not new to the literature, its collection into a single report hopes to offer some value in reducing the ''seek time''.
Limitations on focused scene size for the Polar Format Algorithm (PFA) for Synthetic Aperture Radar (SAR) image formation are derived. A post processing filtering technique for compensating the spatially variant blurring in the image is examined. Modifications to this technique to enhance its robustness are proposed.
Traditional polar format image formation for Synthetic Aperture Radar (SAR) requires a large amount of processing power and memory in order to accomplish in real-time. These requirements can thus eliminate the possible usage of interpreted language environments such as MATLAB. However, with trapezoidal aperture phase history collection and changes to the traditional polar format algorithm, certain optimizations make MATLAB a possible tool for image formation. Thus, this document's purpose is two-fold. The first outlines a change to the existing Polar Format MATLAB implementation utilizing the Chirp Z-Transform that improves performance and memory usage achieving near realtime results for smaller apertures. The second is the addition of two new possible image formation options that perform a more traditional interpolation style image formation. These options allow the continued exploration of possible interpolation methods for image formation and some preliminary results comparing image quality are given.
Relatively small motion measurement errors manifest themselves principally as a phase error in Synthetic Aperture Radar (SAR) complex data samples, and if large enough become observable as a smearing, blurring, or other degradation in the image. The phase error function can be measured and then deconvolved from the original data to compensate for the presumed motion error, ultimately resulting in a well-focused image. Techniques that do this are termed "autofocus" algorithms. A very popular autofocus algorithm is the Phase Gradient Autofocus (PGA) algorithm. The nearly universal, and typically reasonable, assumption is that the motion errors are less than the range resolution of the radar, allowing solely a phase correction to suffice. Very large relative motion measurement errors manifest themselves as an unexpected additional shifting or migration of target locations beyond any deterministic migration during the course of the synthetic aperture. Degradation in images from data exhibiting errors of this magnitude are substantial, often rendering the image completely useless. When residual range migration due to either real or apparent motion errors exceeds the range resolution, conventional autofocus algorithms fail. Excessive residual migration is increasingly encountered as resolutions become finer, less expensive inertial sensors are used, and operating ranges become longer (due to atmospheric phenomena). A new migration-correction autofocus algorithm has been developed that estimates the excessive residual migration and applies phase and frequency corrections to properly focus the image. This overcomes the conventional constraint that motion errors not exceed the SAR range resolution.
Sandia National Laboratories designs and builds Synthetic Aperture Radar (SAR) systems capable of forming high-quality exceptionally fine resolution images. During the spring of 2004 a series of test flights were completed with a Ka-band testbed SAR on Sandia's DeHavilland DHC-6 Twin Otter aircraft. A large data set was collected including real-time fine-resolution images of a variety of target scenes. This paper offers a sampling of high quality images representative of the output of Sandia's Ka-band testbed radar with resolutions as fine as 4 inches. Images will be annotated with descriptions of collection geometries and other relevant image parameters.
Airborne synthetic aperture radar (SAR) imaging systems have reached a degree of accuracy and sophistication that requires the validity of the free-space approximation for radio-wave propagation to be questioned. Based on the thin-lens approximation, a closed-form model for the focal length of a gravity wave-modulated refractive-index interface in the lower troposphere is developed. The model corroborates the suggestion that mesoscale, quasi-deterministic variations of the clear-air radio refractive-index field can cause diffraction patterns on the ground that are consistent with reflectivity artifacts occasionally seen in SAR images, particularly in those collected at long ranges, short wavelengths, and small grazing angles.
SAR phase history data represents a polar array in the Fourier space of a scene being imaged. Polar Format processing is about reformatting the collected SAR data to a Cartesian data location array for efficient processing and image formation. In a real-time system, this reformatting or ''re-gridding'' operation is the most processing intensive, consuming the majority of the processing time; it also is a source of error in the final image. Therefore, any effort to reduce processing time while not degrading image quality is valued. What is proposed in this document is a new way of implementing real-time polar-format processing through a variation on the traditional interpolation/2-D Fast Fourier Transform (FFT) algorithm. The proposed change is based upon the frequency scaling property of the Fourier Transform, which allows a post azimuth FFT interpolation. A post azimuth processing interpolation provides overall benefits to image quality and potentially more efficient implementation of the polar format image formation process.
When residual range migration due to either real or apparent motion errors exceeds the range resolution, conventional autofocus algorithms fail. A new migration-correction autofocus algorithm has been developed that estimates the migration and applies phase and frequency corrections to properly focus the image.
Brief disclosures may often be sufficient for the filing of a Technical Advance with Sandia's Intellectual Property Center, but still be inadequate to facilitate an optimum patent application where more detail and explanation are required. Consequently, the crafting of a patent application may require considerably more additional interaction between the application preparer and the inventors. This inefficiency can be considerably mitigated if the inventors address some critical aspects of a patent application when they write a technical report.
Data collection for interferometric synthetic aperture radar (IFSAR) mapping systems currently utilize two operation modes. A single-antenna, dual-pass IFSAR operation mode is the first mode in which a platform carrying a single antenna traverses a flight path by the scene of interest twice collecting data. A dual-antenna, single-pass IFSAR operation mode is the second mode where a platform possessing two antennas flies past the scene of interest collecting data. There are advantages and disadvantages associated with both of these data collection modes. The single-antenna, dual-pass IFSAR operation mode possesses an imprecise knowledge of the antenna baseline length but allows for large antenna baseline lengths. This imprecise antenna baseline length knowledge lends itself to inaccurate target height scaling. The dual-antenna, one-pass IFSAR operation mode allows for a precise knowledge of the limited antenna baseline length but this limited baseline length leads to increased target height noise. This paper presents a new, innovative dual-antenna, dual-pass IFSAR operation mode which overcomes the disadvantages of the two current IFSAR operation modes. Improved target height information is now obtained with this new mode by accurately estimating the antenna baseline length between the dual flight passes using the data itself. Consequently, this new IFSAR operation mode possesses the target height scaling accuracies of the dual-antenna, one-pass operation mode and the height-noise performance of the one-antenna, dual-pass operation mode.
Modern high-performance Synthetic Aperture Radar (SAR) systems have evolved into highly versatile, robust, and reliable tactical sensors, offering images and information not available from other sensor systems. For example, real-time images are routinely formed by the Sandia-designed General Atomics (AN/APY-8) Lynx SAR yielding 4-inch resolution at 25 km range (representing better than arc-second resolutions) in clouds, smoke, and rain. Sandia's Real-Time Visualization (RTV) program operates an Interferometric SAR (IFSAR) system that forms three dimensional (3-D) topographic maps in near real-time with National Imagery and Mapping Agency (MIMA) Digital Terrain Elevation Data (DTED) level 4 performance (3 meter post spacing with 0.8-meter height accuracy) or better. When exported to 3-D rendering software, this data allows remarkable interactive fly-through experiences. Coherent Change Detection (CCD) allows detecting tire tracks on dirt roads, foot-prints, and other minor, otherwise indiscernible ground disturbances long after their originators have left the scene. Ground Moving Target Indicator (GMTI) radar modes allow detecting and tracking moving vehicles. A Sandia program known as "MiniSAR" is developing technologies that are expected to culminate in a fully functioning, high-performance, real-time SAR that weighs less than 20 Ibs. The purpose of this paper is to provide an overview of recent technology developments, as well as current on-going research and development efforts at Sandia National Laboratories.
Synthetic Aperture Radar systems are being driven to provide images with ever-finer resolutions. This, of course, requires ever-wider bandwidths to support these resolutions in a number of frequency bands across the microwave (and lower) spectrum. The problem is that the spectrum is already quite crowded with a multitude of users, and a multitude of uses. For a radar system, this manifests itself as a number of 'stay-out' zones in the spectrum mandated by regulatory agencies; frequencies where the radar is not allowed to transmit. Even frequencies where the radar is allowed to transmit might be corrupted by interference from other legitimate (and/or illegitimate) users, rendering these frequencies useless to the radar system. In a SAR image, these spectral holes (by whatever source) degrade images, most notably by increasing objectionable sidelobe levels, most evident in the neighborhood of bright point-like objects. For contiguous spectrums, sidelobes in SAR images are controlled by employing window functions. However, those windows that work well for contiguous spectrums don't seem to work well for spectrums with significant gaps or holes. In this paper we address the question "Can some sorts of window functions be developed and employed to advantage when the spectrum is not contiguous, but contains significant holes or gaps?" A window function that minimizes sidelobe energy can be constructed based on prolate spheroidal wave functions. This approach is extended to accommodate spectral notches or holes, although the guaranteed minimum sidelobe energy can be quite high in this case.
The state-of-the-art of inertial micro-sensors (gyroscopes and accelerometers) has advanced to the point where they are displacing the more traditional sensors in many size, power, and/or cost-sensitive applications. A factor limiting the range of application of inertial micro-sensors has been their relatively poor bias stability. The incorporation of an integral sensitive axis rotation capability would enable bias mitigation through proven techniques such as indexing, and foster the use of inertial micro-sensors in more accuracy-sensitive applications. Fabricating the integral rotation mechanism in MEMS technology would minimize the penalties associated with incorporation of this capability, and preserve the inherent advantages of inertial micro-sensors.
An Interferometric Moving Target Indicator radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity vector of a target.
Imaging systems such as Synthetic Aperture Radar collect band-limited data from which an image of a target scene is rendered. The band-limited nature of the data generates sidelobes, or ''spilled energy'' most evident in the neighborhood of bright point-like objects. It is generally considered desirable to minimize these sidelobes, even at the expense of some generally small increase in system bandwidth. This is accomplished by shaping the spectrum with window functions prior to inversion or transformation into an image. A window function that minimizes sidelobe energy can be constructed based on prolate spheroidal wave functions. A parametric design procedure allows doing so even with constraints on allowable increases in system bandwidth. This approach is extended to accommodate spectral notches or holes, although the guaranteed minimum sidelobe energy can be quite high in this case. Interestingly, for a fixed bandwidth, the minimum-mean-squared-error image rendering of a target scene is achieved with no windowing at all (rectangular or boxcar window).
A Synthetic Aperture Radar (SAR) image is a two-dimensional projection of the radar reflectivity from a 3-dimensional object or scene. Stereoscopic SAR employs two SAR images from distinct flight paths that can be processed together to extract information of the third collapsed dimension (typically height) with some degree of accuracy. However, more than two SAR images of the same scene can similarly be processed to further improve height accuracy, and hence 3-dimensional position accuracy. This report shows how.
Superresolution concepts offer the potential of resolution beyond the classical limit. This great promise has not generally been realized. In this study we investigate the potential application of superresolution concepts to synthetic aperture radar. The analytical basis for superresolution theory is discussed. The application of the concept to synthetic aperture radar is investigated as an operator inversion problem. Generally, the operator inversion problem is ill posed. A criterion for judging superresolution processing of an image is presented.
Interferometric SAR (IFSAR) can be shown to be a special case of 3-D SAR image formation. In fact, traditional IFSAR processing results in the equivalent of merely a super-resolved, under-sampled, 3-D SAR image. However, when approached as a 3-D SAR problem, a number of IFSAR properties and anomalies are easily explained. For example, IFSAR decorrelation with height is merely ordinary migration in 3-D SAR. Consequently, treating IFSAR as a 3-D SAR problem allows insight and development of proper motion compensation techniques and image formation operations to facilitate optimal height estimation. Furthermore, multiple antenna phase centers and baselines are easily incorporated into this formulation, providing essentially a sparse array in the elevation dimension. This paper shows the Polar Format image formation algorithm extended to 3 dimensions, and then proceeds to apply it to the IFSAR collection geometry. This suggests a more optimal reordering of the traditional IFSAR processing steps.
The requirement to efficiently form images over a large range of geometries has a profound impact on the design of a Synthetic Aperture Radar (SAR) system. This article shows how a data set conducive to efficient processing might increase the total RF bandwidth. It also presents examples of how a fixed RF bandwidth might then limit SAR geometries.