Publications

Results 1–25 of 51
Skip to search filters

Collective Summary of sCO2 Materials Development (Supercritical Transformational Electric Power Generation (STEP) Level 2 Milestone Report) (Parts I - II)

Menon, Nalini C.; Anderson, Mark U.; Elbakhshwan, Mohamed E.; Nissen, April E.; Ryan, Fitzjames P.; Antoun, Bonnie R.; Horton, Robert D.; Kariya, Arthur K.

Polymers such as PTFE (polytetrafluorethylene or Teflon), EPDM (ethylene propylene diene monomer) rubber, FKM fluoroelastomer (Viton), Nylon 11, Nitrile butadiene (NBR) rubber, hydrogenated nitrile rubber (HNBR) and perfluoroelastomers (FF_202) are commonly employed in super critical CO2 (sCO2) energy conversion systems. O-rings and gaskets made from these polymers face stringent performance conditions such as elevated temperatures, high pressures, pollutants, and corrosive humid environments. In FY 2019, we conducted experiments at high temperatures (100°C and 120°C) under isobaric conditions (20 MPa). Findings showed that elevated temperatures accelerated degradation of polymers in sCO2, and that certain polymer microstructures are more susceptible to degradation over others. In FY 2020, the focus was to understand the effect of sCO2 on polymers at low (10 MPa) and high pressures (40 MPa) under isothermal conditions (100°C). It was clear that the same selectivity was observed in these experiments wherein certain polymeric functionalities showed more propensity to failure over others. Fast diffusion, supported by higher pressures and long exposure times (1000 hours) at the test temperature, caused increased damage in sCO2 environments to even the most robust polymers. We also looked at polymers under compression in sCO2 at 100°C and 20 MPa pressure to imitate actual sealing performance required of these materials in sCO2 systems. Compression worsened the physical damage that resulted from chemical attack of the polymers under these test conditions. In FY 2021, the effect of cycling temperature (from 50°C to 150°C to 50°C) for polymers under a steady sCO2 pressure of 20 MPa was studied. The aim was to understand the influence of cycling temperatures of sCO2 for typical polymers under isobaric (20 MPa) conditions. Thermoplastic polymers (Nylon, and PTFE) and elastomers (EPDM, Viton, Buna N, Neoprene, FF202, and HNBR) were subjected to 20 MPa sCO2 pressure for 50 cycles and 100 cycles in separate experiments. Samples were extracted for ex-situ characterization at 50 cycles and upon the completion of 100 cycles. Each cycle constituted of 175 minutes of cycling from 50°C to 150°C. The polymer samples were examined for physical and chemical changes by Dynamic Mechanical and Thermal Analysis (DMTA), Fourier Transform Infrared (FTIR) spectroscopy, and compression set. Density and mass changes immediately after removal from test were measured for degree of swell comparisons. Optical microscopy techniques and micro computer tomography (micro CT) images were collected on select specimens. Evaluations conducted showed that exposures to super-critical CO2 environments resulted in combinations of physical and/or chemical changes. For each polymer, the dominance of cycling temperatures under sCO2 pressures, were evaluated. Attempts were made to qualitatively link the permanent sCO2 effects to polymer micro- structure, free volume, backbone substitutions, presence of polar groups, and degree of crystallinity differences. This study has established that soft polymeric materials are conducive to failure in sCO2 through mechanisms of failure that are dependent on polymer microstructure and chemistry. Polar pendant groups, large atom substitutions on the backbone are some of the factors that are influential structural factors.

More Details

An Efficient Post-Polymerization Modification of Poly(Styrene- co -Maleic Anhydride) for Thermally Reversible Nanocomposites

Macromolecular Materials and Engineering

Pavia Sanders, Adriana P.; Nissen, April E.; O'Bryan, Gregory O.

A copolymer of maleic anhydride and styrene is functionalized with Diels–Alder (DA) capable pendant groups to enable the study of this material with different crosslink densities. This constituent is synthesized using commercially available starting materials and relatively simple and uncomplicated chemistries which open the possibility for its use in large-scale applications. The 10%, 25%, 50%, and 100% DA nominal crosslinking based on available pendant furan groups on the polymeric component is investigated. The reaction kinetics are monitored using infrared spectroscopy and rheology. Based on the rheological results, carbon nanotube (CNT) incorporation into the DA matrix is explored in order to determine its effects on the complex modulus of the material. This work done in this report is meant as a proof of concept for this DA material with the possibility of its incorporation into other commonly used bulk materials and/or adhesives to allow for an easily reversible product formulation.

More Details

Mechanical Properties of Woven Composites at Ambient Temperature

Jin, Huiqing J.; Lu, Wei-Yang L.; Nissen, April E.; Nelson, Kevin N.; Briggs, Timothy B.

This report describes the mechanical characterization of six types of woven composites that Sandia National Laboratories are interested in. These six composites have various combinations of two types of fibers (Carbon-IM7 and Glass-S2) and three types of resins (UF- 3362, TC275-1, TC350-1). In this work, two sets of experiments were conducted: quasi-static loading with displacement rate of 2 mm/min (1.3x10^( -3 ) in/s) and high rate loading with displacement of 5.08 m/s (200 in/s). Quasi-static experiments were performed at three loading orientations of 0deg, 45deg, 90deg for all the six composites to fully characterize their mechanical properties. The elastic properties Young's modulus and Poisson's ratio, as well as ultimate stress and strain were obtained from the quasi-static experiments. The high strain rate experiments were performed only on glass fiber composites along 0deg angle of loading. The high rate experiments were mainly to study how the strain rate affects the ultimate stress of the glass-fiber composites with different resins.

More Details

Mechanical Characterization of Woven Composites at Different Temperatures

Jin, Huiqing J.; Briggs, Timothy B.; Nissen, April E.; Nelson, Kevin N.

This work is to characterize the mechanical properties of the selected composites along both on- and off- fiber axes at the ambient loading condition (+25 o C), as well as at the cold (- 54 o C), and high temperatures (+71 o C). A series of tensile experiments were conducted at different material orientations of 0 o , 22.5 o, 45 o , 67.5 o , 90 o to measure the ultimate strength and strain f, f, and material engineering constants, including Young's modulus E, Poisson's ratio , The composite materials in this study were one carbon composite carbon (AS4C/UF3662) and one E-galss (E-glass/UF3662) composite. They both had the same resin of UF 3362, but with different fibers of carbon AS4C and E-glass. The mechanical loading in this study was limited to the quasi-static loading of 2 mm/min (1.3x10 ^(-3) in/s), which was equivalent to 5x10 (-4) strain rate. These experimental data of the mechanical properties of composites at different loading directions and temperatures were summarized and compared. These experimental results provided database for design engineers to optimize structures through ply angle modifications and for analysts to better predict the component performance.

More Details

Effectiveness of Flame Retardants in TufFoam

Abelow, Alexis E.; Nissen, April E.; Massey, Lee T.; Whinnery, LeRoy L.

An investigation of polyurethane foam filled with known flame retardant fillers including hydroxides, melamine, phosphate-containing compounds, and melamine phosphates was carried out to produce a low-cost material with high flame retardant efficiency. The impact of flame retardant fillers on the physical properties such a s composite foam density, glass transition temperature, storage modulus, and thermal expansion of composite foams was investigated with the goal of synthesizing a robust rigid foam with excellent flame retardant properties.

More Details
Results 1–25 of 51
Results 1–25 of 51