Publications

Results 101–112 of 112
Skip to search filters

On-chip preconcentration of proteins for picomolar detection in oral fluids

Micro Total Analysis Systems - Proceedings of MicroTAS 2005 Conference: 9th International Conference on Miniaturized Systems for Chemistry and Life Sciences

Hatch, A.V.; Herr, A.E.; Throckmorton, Daniel J.; Brennan, J.P.; Giannobile, W.V.; Singh, Anup K.

We report an automated on-chip clinical diagnostic that integrates analyte mixing, preconcentration, and subsequent detection using native polyacrylamide gel electrophoresis (PAGE) immunoanalysis. Sample proteins are concentrated > 100-fold with an in situ polymerized size exclusion membrane. The membrane also facilitates rapid mixing of reagents and sample prior to analysis. The integrated system was used to rapidly (minutes) detect immune-response markers in saliva acquired from periodontal diseased patients. Copyright © 2005 by the Transducer Research Foundation, Inc.

More Details

LDRD final report on nanovehicle light-driven propulsion

Shelnutt, John A.; Medforth, Craig J.; Singh, Anup K.; Van Swol, Frank

Having demonstrated the possibility of constructing nanoscale metallic vehicular bodies as described in last year's proposal, our goals have been to make uniform preparations of the metallized lipid assemblies and to determine the feasibility of powering these nanostructures with biological motors that are activated and driven by visible light. We desired that the propulsion system be constructed entirely by self-assembly and powered by a photocatalytic process partially already built into the nanovehicle. The nanovehicle we desire to build is composed of both natural biological components (ATPase, kinesin-microtubules) and biomimetic components (platinized liposomes, photosynthetic membrane) as functional units. The vehicle's body was originally envisioned to be composed of a surfactant liposomal bilayer coated with platinum nanoparticles, but instead of the expected nanoparticles we were able to grow dendritic 2-nm thick platinum sheets on the liposomes. Now, we have shown that it is possible to completely enclose the liposomes with sheeting to form porous platinum spheres, which show good structural stability as evidenced by their ability to survive the stresses of electron-microscopy sample preparation. Our goals were to control the synthesis of the platinized liposomes well enough to make uniform preparations of the coated individual liposomes and to develop the propulsion system for these nanovehicles a hydrogen-evolving artificial photosynthetic system in the liposomal bilayer that generates the pH gradient across the membrane that is necessary to drive the synthesis of ATP by ATP-synthase incorporated in the membrane. ATP produced would fuel the molecular motor (kinesin) attached to the vehicle, needing only light, storable ADP, phosphate, and an electron donor to be produced by ATP-synthase in the membrane. These research goals appear to be attainable, but growing the uniform preparations of the liposomes coated with dendritic platinum sheeting, a necessary accomplishment that would simplify the task of incorporating and verifying the photosynthetic function of the nanovehicle membrane, has proved to be difficult. The detailed understanding of the relative locations of surfactant and Pt in the liposomal bodies has also forced a change in the nanovehicle design strategies. Nevertheless, we have found no insurmountable obstacles to making these nanovehicles given a larger and longer term research effort. These nanovehicles could potentially respond to chemical gradients, light intensity, and field gradients, in the same manner that magnetic bacteria navigate. The cargo might include decision-making and guidance components, drugs and other biological and chemical agents, explosives, catalytic reactors, and structural materials.

More Details

Controlled synthesis of 2-D and 3-D dendritic platinum nanostructures

Proposed for publication in the Journal of the American Chemical Society.

Shelnutt, John A.; Medforth, Craig J.; Singh, Anup K.; Brinker, C.J.; Van Swol, Frank

Seeding and autocatalytic reduction of platinum salts in aqueous surfactant solution using ascorbic acid as the reductant leads to remarkable dendritic metal nanostructures. In micellar surfactant solutions, spherical dendritic metal nanostructures are obtained, and the smallest of these nanodendrites resemble assemblies of joined nanoparticles and the nanodendrites are single crystals. With liposomes as the template, dendritic platinum sheets in the form of thin circular disks or solid foam-like nanomaterials can be made. Synthetic control over the morphology of these nanodendrites, nanosheets, and nanostructured foams is realized by using a tin-porphyrin photocatalyst to conveniently and effectively produce a large initial population of catalytic growth centers. The concentration of seed particles determines the ultimate average size and uniformity of these novel two- and three-dimensional platinum nanostructures.

More Details

LDRD final report on light-powered nanovehicles

Shelnutt, John A.; Van Swol, Frank; Qiu, Yan Q.; Shelnutt, John A.; Medforth, Craig J.; Singh, Anup K.

We have investigated the possibility of constructing nanoscale metallic vehicles powered by biological motors or flagella that are activated and powered by visible light. The vehicle's body is to be composed of the surfactant bilayer of a liposome coated with metallic nanoparticles or nanosheets grown together into a porous single crystal. The diameter of the rigid metal vesicles is from about 50 nm to microns. Illumination with visible light activates a photosynthetic system in the bilayer that can generate a pH gradient across the liposomal membrane. The proton gradient can fuel a molecular motor that is incorporated into the membrane. Some molecular motors require ATP to fuel active transport. The protein ATP synthase, when embedded in the membrane, will use the pH gradient across the membrane to produce ATP from ADP and inorganic phosphate. The nanoscale vehicle is thus composed of both natural biological components (ATPase, flagellum; actin-myosin, kinesin-microtubules) and biomimetic components (metal vehicle casing, photosynthetic membrane) as functional units. Only light and storable ADP, phosphate, water, and weak electron donor are required fuel components. These nano-vehicles are being constructed by self-assembly and photocatalytic and autocatalytic reactions. The nano-vehicles can potentially respond to chemical gradients and other factors such as light intensity and field gradients, in a manner similar to the way that magnetic bacteria navigate. The delivery package might include decision-making and guidance components, drugs or other biological and chemical agents, explosives, catalytic reactors, and structural materials. We expected in one year to be able only to assess the problems and major issues at each stage of construction of the vehicle and the likely success of fabricating viable nanovehicles with our biomimetic photocatalytic approach. Surprisingly, we have been able to demonstrate that metallized photosynthetic liposomes can indeed be made. We have completed the synthesis of metallized liposomes with photosynthetic function included and studied these structures by electron microscopy. Both platinum and palladium nanosheeting have been used to coat the micelles. The stability of the vehicles to mechanical stress and the solution environment is enhanced by the single-crystalline platinum or palladium coating on the vesicle. With analogous platinized micelles, it is possible to dry the vehicles and re-suspend them with full functionality. However, with the liposomes drying on a TEM grid may cause the platinized liposomes to collapse, although probably stay viable in solution. It remains to be shown whether a proton motive force across the metallized bilayer membrane can be generated and whether we will also be able to incorporate various functional capabilities including ATP synthesis and functional molecular motors. Future tasks to complete the nanovehicles would be the incorporation of ATP synthase into metallized liposomes and the incorporation of a molecular motor into metallized liposomes.

More Details

DOE/BES/NSET annual report on growth of metal and semiconductor nanostructures using localized photocatalysts

Shelnutt, John A.; Brinker, C.J.; Van Swol, Frank; Haddad, Raid E.; Shelnutt, John A.; Medforth, Craig J.; Pereira, Eulalia P.; Singh, Anup K.

Our overall goal is to understand and develop a novel light-driven approach to the controlled growth of unique metal and semiconductor nanostructures and nanomaterials. In this photochemical process, bio-inspired porphyrin-based photocatalysts reduce metal salts in aqueous solutions at ambient temperatures to provide metal nucleation and growth centers. Photocatalyst molecules are pre-positioned at the nanoscale to control the location and morphology of the metal nanostructures grown. Self-assembly, chemical confinement, and molecular templating are some of the methods used for nanoscale positioning of the photocatalyst molecules. When exposed to light, the photocatalyst molecule repeatedly reduces metal ions from solution, leading to deposition and the synthesis of the new nanostructures and nanostructured materials. Studies of the photocatalytic growth process and the resulting nanostructures address a number of fundamental biological, chemical, and environmental issues and draw on the combined nanoscience characterization and multi-scale simulation capabilities of the new DOE Center for Integrated Nanotechnologies, the University of New Mexico, and Sandia National Laboratories. Our main goals are to elucidate the processes involved in the photocatalytic growth of metal nanomaterials and provide the scientific basis for controlled synthesis. The nanomaterials resulting from these studies have applications in nanoelectronics, photonics, sensors, catalysis, and micromechanical systems. The proposed nanoscience concentrates on three thematic research areas: (1) the creation of nanoscale structures for realizing novel phenomena and quantum control, (2) understanding nanoscale processes in the environment, and (3) the development and use of multi-scale, multi-phenomena theory and simulation. Our goals for FY03 have been to understand the role of photocatalysis in the synthesis of dendritic platinum nanostructures grown from aqueous surfactant solutions under ambient conditions. The research is expected to lead to highly nanoengineered materials for catalysis mediated by platinum, palladium, and potentially other catalytically important metals. The nanostructures made also have potential applications in nanoelectronics, nanophotonics, and nanomagnetic systems. We also expect to develop a fundamental understanding of the uses and limitations of biomimetic photocatalysis as a means of producing metal and semiconductor nanostructures and nanomaterials. The work has already led to a relationship with InfraSUR LLC, a small business that is developing our photocatalytic metal reduction processes for environmental remediation. This work also contributes to science education at a predominantly Hispanic and Native American university.

More Details

Distributed Sensor Particles for Remote Fluorescence Detection of Trace Analytes: UXO/CW

Singh, Anup K.; Schmitt, Randal L.; Johnson, Mark S.; Hargis, Philip J.; Simonson, Robert J.; Simonson, Robert J.; Schoeniger, Joseph S.; Ashley, Carol S.; Brinker, C.J.; Hance, Bradley G.

This report summarizes the development of sensor particles for remote detection of trace chemical analytes over broad areas, e.g residual trinitrotoluene from buried landmines or other unexploded ordnance (UXO). We also describe the potential of the sensor particle approach for the detection of chemical warfare (CW) agents. The primary goal of this work has been the development of sensor particles that incorporate sample preconcentration, analyte molecular recognition, chemical signal amplification, and fluorescence signal transduction within a ''grain of sand''. Two approaches for particle-based chemical-to-fluorescence signal transduction are described: (1) enzyme-amplified immunoassays using biocompatible inorganic encapsulants, and (2) oxidative quenching of a unique fluorescent polymer by TNT.

More Details
Results 101–112 of 112
Results 101–112 of 112