Microfluidic Device for Rapid Simultaneous Detection of DNA RNA and Protein Biomarkers in Single Cells
Abstract not provided.
Abstract not provided.
18th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2014
Synthetic biology experiments require optimization of pathways consisting of many genes and other genetic elements and given the large number of alternatives available for each element, optimization of a pathway can require large number of experiments consuming prohibitively-expensive amounts of DNA and enzymes. Digital microfluidics (DMF), because of its ability to process small volumes, presents a cost-effective solution for conducting high-throughput cloning and expression experiments. We describe the first DMF device for automating all critical steps of transformation and culture including plasmid addition, transformation by heat-shock, addition of selection medium, culture and expression of GFP.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Lab on a Chip
RNA interference (RNAi) is a powerful tool for functional genomics with the capacity to comprehensively analyze host-pathogen interactions. High-throughput RNAi screening is used to systematically perturb cellular pathways and discover therapeutic targets, but the method can be tedious and requires extensive capital equipment and expensive reagents. To aid in the development of an inexpensive miniaturized RNAi screening platform, we have developed a two part microfluidic system for patterning and screening gene targets on-chip to examine cellular pathways involved in virus entry and infection. First, a multilayer polydimethylsiloxane (PDMS)-based spotting device was used to array siRNA molecules into 96 microwells targeting markers of endocytosis, along with siRNA controls. By using a PDMS-based spotting device, we remove the need for a microarray printer necessary to perform previously described small scale (e.g. cellular microarrays) and microchip-based RNAi screening, while still minimizing reagent usage tenfold compared to conventional screening. Second, the siRNA spotted array was transferred to a reversibly sealed PDMS-based screening platform containing microchannels designed to enable efficient cell loading and transfection of mammalian cells while preventing cross-contamination between experimental conditions. Validation of the screening platform was examined using Vesicular stomatitis virus and emerging pathogen Rift Valley fever virus, which demonstrated virus entry pathways of clathrin-mediated endocytosis and caveolae-mediated endocytosis, respectively. The techniques here are adaptable to other well-characterized infection pathways with a potential for large scale screening in high containment biosafety laboratories. © 2013 The Royal Society of Chemistry.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
15th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2011, MicroTAS 2011
A microfluidic RNA interference screening device was designed to study which genes are involved in Rift Valley Fever Virus (RVFV) infection. Spots of small interfering RNA (siRNA) are manually spotted onto a glass microscope slide, and aligned to a screening device designed to accommodate cell seeding, siRNA transfection, cell culture, virus infection and imaging analysis. This portable and disposable PDMS-based microfluidic device for RNAi screening was designed for a 96-well library of transfection against variety of gene targets. Current results show transfection of GFP-22 siRNA within the device, as compared to controls, which inhibit the expression of GFP produced by recombinant RVFV. This technique can be applied to host-pathogen interactions for highly dangerous systems in BSL-3/4 laboratories, where bulky robotic equipment is not ideal.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
14th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2010, MicroTAS 2010
Uncultivable microorganisms likely play significant roles in the ecology within the human body, with subtle but important implications for human health. Focusing on the oral microbiome, we are developing a processor for targeted isolation of individual microbial cells, facilitating whole-genome analysis without the need for isolation of pure cultures. The processor consists of three microfluidic modules: identification based on 16S rRNA fluorescence in situ hybridization (FISH), fluorescence-based sorting, and encapsulation of individual selected cells into small droplets for whole-genome amplification. We present here a technique for performing microscale FISH and flow cytometry, as a prelude to single cell sorting.
14th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2010, MicroTAS 2010
Here we demonstrate the suitability of robust nucleic acid affinity reagents in an integrated point-of-care diagnostic platform for monitoring proteomic biomarkers indicative of astronaut health in spaceflight applications. A model thioaptamer[1] targeting nuclear factor-kappa B (NF-KB) is evaluated in an on-chip electrophoretic gel-shift assay for human serum. Key steps of i) mixing sample with the aptamer, ii) buffer exchange, and iii) preconcentration of sample were successfully integrated upstream of fluorescence-based detection. Challenges due to i) nonspecific interactions with serum, and ii) preconcentration at a nanoporous membrane are discussed and successfully resolved to yield a robust, rapid, and fully-integrated diagnostic system.
14th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2010, MicroTAS 2010
We present a platform that combines patterned photopolymerized polymer monoliths with living radical polymerization (LRP) to develop a low cost microfluidic based immunoassay capable of sensitive (low to sub pM) and rapid (<30 minute) detection of protein in 100 μL sample. The introduction of LRP functionality to the porous monolith allows one step grafting of functionalized affinity probes from the monolith surface while the composition of the hydrophilic graft chain reduces non-specific interactions and helps to significantly improve the limit of detection.