Publications

Results 51–75 of 108
Skip to search filters

The Science of Battery Degradation

Sullivan, John P.; Fenton, Kyle R.; El Gabaly Marquez, Farid E.; Harris, Charles T.; Hayden, Carl C.; Hudak, Nicholas H.; Jungjohann, Katherine L.; Kliewer, Christopher J.; Leung, Kevin L.; McDaniel, Anthony H.; Nagasubramanian, Ganesan N.; Sugar, Joshua D.; Talin, A.A.; Tenney, Craig M.; Zavadil, Kevin R.

This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy changes little with degradation but the origin of degradation in cathodes is kinetic in nature, i.e. lower rate cycling recovers lost capacity. Finally, our modeling of electrode-electrolyte interfaces revealed that electrolyte degradation may occur by either a single or double electron transfer process depending on thickness of the solid-electrolyte-interphase layer, and this cross-over can be modeled and predicted.

More Details

Final LDRD report :

Ambrosini, Andrea A.; Allendorf, Mark D.; Coker, Eric N.; Ermanoski, Ivan E.; Hogan, Roy E.; McDaniel, Anthony H.

Despite rapid progress, solar thermochemistry remains high risk; improvements in both active materials and reactor systems are needed. This claim is supported by studies conducted both prior to and as part of this project. Materials offer a particular large opportunity space as, until recently, very little effort apart from basic thermodynamic analysis was extended towards understanding this most fundamental component of a metal oxide thermochemical cycle. Without this knowledge, system design was hampered, but more importantly, advances in these crucial materials were rare and resulted more from intuition rather than detailed insight. As a result, only two basic families of potentially viable solid materials have been widely considered, each of which has significant challenges. Recent efforts towards applying an increased level of scientific rigor to the study of thermochemical materials have provided a much needed framework and insights toward developing the next generation of highly improved thermochemically active materials. The primary goal of this project was to apply this hard-won knowledge to rapidly advance the field of thermochemistry to produce a material within 2 years that is capable of yielding CO from CO2 at a 12.5 % reactor efficiency. Three principal approaches spanning a range of risk and potential rewards were pursued: modification of known materials, structuring known materials, and identifying/developing new materials for the application. A newly developed best-of-class material produces more fuel (9x more H2, 6x more CO) under milder conditions than the previous state of the art. Analyses of thermochemical reactor and system efficiencies and economics were performed and a new hybrid concept was reported. The larger case for solar fuels was also further refined and documented.

More Details

Nonstoichiometric perovskite oxides for solar thermochemical H2 and CO production

Energy Procedia

McDaniel, Anthony H.; Ambrosini, A.; Coker, E.N.; Miller, J.E.; Chueh, W.C.; O'Hayre, R.; Tong, J.

Perovskite oxides (ABO3) are a largely unexplored class of materials in solar fuel applications. In this paper we examine the use of nonstoichiometric perovskite-type oxides in a two-step, solar-thermochemical water or carbon dioxide splitting cycle. We find that O2 begins to evolve during thermal reduction from a Sr- and Mn-doped LaAlO3 fully 300 °C lower than that of CeO2, and that these compounds will split both H2O and CO2. The yield of H2 and CO is significantly greater than CeO2, a benchmark material in solar fuels research, at a thermal reduction temperature 150 °C below that commonly reported for CeO2. In addition, the perovskite redox kinetics compare favorably to CeO2, which is known for its rapid reaction rates. We also find that an Fe-doped CaTiO3 is redox active and will split H2O, though the performance of this material is similar to that of CeO2. Finally, we introduce an experimental protocol that combines an ideal stagnation-flow reactor with detailed numerical modeling to effectively deconvolve intrinsic material behavior from interference induced by physical processes occurring inside the flow reactor. This method utilizes rate information contained within the entire time domain of the oxidation reaction, and assigns rate-governing processes to the material within the context of solid-state kinetic theory. © 2013 The Authors.

More Details

Considerations in the design of materials for solar-driven fuel production using metal-oxide thermochemical cycles

Advanced Energy Materials

Miller, James E.; McDaniel, Anthony H.; Allendorf, Mark D.

With demand for energy increasing worldwide and an ever-stronger case building for anthropogenic climate change, the need for carbon-neutral fuels is becoming an imperative. Extensive transportation infrastructure based on liquid hydrocarbon fuels motivates development of processes using solar energy to convert CO2 and H2O to fuel precursors such as synthesis gas. Here, perspectives concerning the use of solar-driven thermochemical cycles using metal oxides to produce fuel precursors are given and, in particular, the important relationship between reactor design and material selection is discussed. Considering both a detailed thermodynamic analysis and factors such as reaction kinetics, volatility, and phase stability, an integrated analytical approach that facilitates material design is presented. These concepts are illustrated using three oxide materials currently receiving considerable attention: metal-substituted ferrites, ceria, and doped cerias. Although none of these materials is "ideal," the tradeoffs made in selecting any one of them are clearly indicated, providing a starting point for assessing the feasibility of alternative materials developed in the future. Increasing demand for energy and anthropogenic climate change make carbon-neutral fuels an imperative. Transportation infrastructure based on liquid fuels motivates the development of solar-driven processes to convert CO2 and H 2O to fuel precursors. This perspective concerns the use of solar-driven thermochemical cycles based on metal oxides to produce fuel precursors and the synergistic relationship between reactor design and material selection. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

More Details
Results 51–75 of 108
Results 51–75 of 108