Many materials of interest to Sandia transition from fluid to solid or have regions of both phases coexisting simultaneously. Currently there are, unfortunately, no material models that can accurately predict this material response. This is relevant to applications that "birth stress" related to geoscience, nuclear safety, manufacturing, energy production and bioscience. Accurately capturing solidification and residual stress enables fully predictive simulations of the evolving front shape or final product. Accurately resolving flow of proppants or blood could reduce environmental impact or lead to better treatments for heart attacks, thrombosis, or aneurism. We will address a science question in this proposal: When does residual stress develop during the critical transition from liquid to solid and how does it affect material deformation? Our hypothesis is that these early phases of stress development are critical to predictive simulation of material performance, net shape, and aging. In this project, we use advanced constitutive models with yield stress to represent both fluid and solid behavior simultaneously. The report provides an abbreviated description of the results from our LDRD "Stress Birth and Death: Disruptive Computational Mechanics and Novel Diagnostics for Fluid-to-Solid Transitions," since we have written four papers that document the work in detail and which we reference. We give highlights of the work and describe the gravitationally driven flow visualization experiment on a model yield stress fluid, Carbopol, at various concentrations and flow rates. We were able to collapse the data on a single master curve by showing it was self-similar. We also describe the Carbopol rheology and the constitutive equations of interest including the Bingham-Carreau-Yasuda model, the Saramito model, and the HB-Saramito model including parameter estimation for the shear and oscillatory rheology. We present several computational models including the 3D moving mesh simulations of both the Saramito models and Bingham-Carreau-Yasuda (BCY) model. We also show results from the BCY model using a 3D level set method and two different ways of handling reduced order Hele-Shaw modeling for generalized Newtonian fluids. We present some first ever two-dimensional results for the modified Jeffries Kamani-Donley-Rogers constitutive equation developed during this project. We include some recent results with a successful Saramito-level set coupling that allows us to tackle problems with complex geometries like mold filling in a thin gap with an obstacle, without the need for remeshing or remapping. We report on some experiments for curing systems where fluorescent particles are used to track material flow. These experiments were carried out in an oven on Sylgard 184 as a model polymerizing system. We conclude the report with a summary of accomplishments and some thoughts on follow-on work.
In response to personal protective equipment (PPE) shortages in the United States due to the Coronavirus Disease 2019, two models of N95 respirators were evaluated for reuse after gamma radiation sterilization. Gamma sterilization is attractive for PPE reuse because it can sterilize large quantities of material through hermetically sealed packaging, providing safety and logistic benefits. The Gamma Irradiation Facility at Sandia National Laboratories was used to irradiate N95 filtering facepiece respirators to a sterilization dose of 25 kGy(tissue). Aerosol particle filtration performance testing and electrostatic field measurements were used to determine the efficacy of the respirators after irradiation. Both respirator models exhibited statistically significant decreases in particle filtering efficiencies and electrostatic potential after irradiation. The largest decrease in capture efficiency was 40–50% and peaked near the 200 nm particle size. The key contribution of this effort is correlating the electrostatic potential change of individual filtration layer of the respirator with the decrease filtration efficiency after irradiation. This observation occurred in both variations of N95 respirator that we tested. Electrostatic potential measurement of the filtration layer is a key indicator for predicting filtration efficiency loss.
Shortages of N95 respirators for use by medical personnel have driven consideration of novel conservation strategies, including decontamination for reuse and extended use. Decontamination methods listed as promising by the Centers for Disease Control and Prevention (CDC) (vaporous hydrogen peroxide (VHP), wet heat, ultraviolet irradiation (UVI)) and several methods considered for low resource environments (bleach, isopropyl alcohol and detergent/soap) were studied for two commonly used surgical N95 respirators (3M™ 1860 and 1870+ Aura™). Although N95 filtration performance depends on the electrostatically charged electret filtration layer, the impact of decontamination on this layer is largely unexplored. As such, respirator performance following decontamination was assessed based on the fit, filtration efficiency, and pressure drop, along with the relationship between (1) surface charge of the electret layer, and (2) elastic properties of the straps. Decontamination with VHP, wet heat, UVI, and bleach did not degrade fit and filtration performance or electret charge. Isopropyl alcohol and soap significantly degraded fit, filtration performance, and electret charge. Pressure drop across the respirators was unchanged. Modest degradation of N95 strap elasticity was observed in mechanical fatigue testing, a model for repeated donnings and doffings. CDC recommended decontamination methods including VHP, wet heat, and UV light did not degrade N95 respirator fit or filtration performance in these tests. Extended use of N95 respirators may degrade strap elasticity, but a loss of face seal integrity should be apparent during user seal checks. NIOSH recommends performing user seal checks after every donning to detect loss of appropriate fit. Decontamination methods which degrade electret charge such as alcohols or detergents should not be used on N95 respirators. The loss of N95 performance due to electret degradation would not be apparent to a respirator user or evident during a negative pressure user seal check.
N95 respirators became scarce to the general public in mid-to-late March of 2020 due to the SARS-CoV-2 epidemic. By mid-April of 2020, most states in the United States were requiring face coverings to be worn while in public enclosed places and in busy outdoor areas where groups of people were in close proximity. Many resorted to cloth masks, homemade masks, procedure masks obtained through online purchases, and other ad-hoc means. Thus, there was and still is a need to determine the aerosol filtration efficacy of commonly available materials that can be used for homemade mask construction. This study focused on non- woven polymeric fabrics that are readily available for homemade mask construction. The conclusion of this study is that non-woven materials that carry a high electric charge or those that can easily acquire charge had the highest aerosol filtration efficiency per unit of pressure drop. Future work should examine a wider variety of these materials and determine the maximum pressure drop that a nominal homemade mask can withstand before a significant portion of airflow is diverted around the mask. More broadly, a better understanding of the charge state on non-woven materials and impact of that charge state on filtration efficiency is needed.
Kinetic simulations of plasma phenomena during and after formation of the conductive plasma channel of a nanosecond pulse discharge are analyzed and compared to existing experimental measurements. Particle-in-cell with direct simulation Monte Carlo collisions (PIC-DSMC) modeling is used to analyze a discharge in helium at 200 Torr and 300 K over a 1 cm gap. The analysis focuses on physics that would not be reproduced by fluid models commonly used at this high number density and collisionality, specifically non-local and stochastic phenomena. Similar analysis could be used to improve the predictive capability of lower fidelity or reduced order models. First, the modeling results compare favorably with experimental measurements of electron number density, temperature, and 1D electron energy distribution function at the same conditions. Second, it is shown that the ionization wave propagates in a stochastic, stepwise manner, dependent on rare, random ionization events ahead of the ionization wave when the ionization fraction in front of the ionization wave is very low, analagous to the stochastic branching of streamers in 3D. Third, analysis shows high-energy runaway electrons accelerated in the cathode layer produce electron densities in the negative glow region over an order of magnitude above those in the positive column. Future work to develop reduced order models of these two phenomena would improve the accuracy of fluid plasma models without the cost of PIC-DSMC simulations.
Glass-ceramic seals may be the future of hermetic connectors at Sandia National Laboratories. They have been shown capable of surviving higher temperatures and pressures than amorphous glass seals. More advanced finite-element material models are required to enable model-based design and provide evidence that the hermetic connectors can meet design requirements. Glass-ceramics are composite materials with both crystalline and amorphous phases. The latter gives rise to (non-linearly) viscoelastic behavior. Given their complex microstructures, glass-ceramics may be thermorheologically complex, a behavior outside the scope of currently implemented constitutive models at Sandia. However, it was desired to assess if the Simplified Potential Energy Clock (SPEC) model is capable of capturing the material response. Available data for SL 16.8 glass-ceramic was used to calibrate the SPEC model. Model accuracy was assessed by comparing model predictions with shear moduli temperature dependence and high temperature 3-point bend creep data. It is shown that the model can predict the temperature dependence of the shear moduli and 3- point bend creep data. Analysis of the results is presented. Suggestions for future experiments and model development are presented. Though further calibration is likely necessary, SPEC has been shown capable of modeling glass-ceramic behavior in the glass transition region but requires further analysis below the transition region.
We present selected results from a series of Open Stack thermal battery tests performed in FY14 and FY15 and discuss our findings. These tests were meant to provide validation data for the comprehensive thermal battery simulation tools currently under development in Sierra/Aria under known conditions compared with as-manufactured batteries. We are able to satisfy this original objective in the present study for some test conditions. Measurements from each test include: nominal stack pressure (axial stress) vs. time in the cold state and during battery ignition, battery voltage vs. time against a prescribed current draw with periodic pulses, and images transverse to the battery axis from which cell displacements are computed. Six battery configurations were evaluated: 3, 5, and 10 cell stacks sandwiched between 4 layers of the materials used for axial thermal insulation, either Fiberfrax Board or MinK. In addition to the results from 3, 5, and 10 cell stacks with either in-line Fiberfrax Board or MinK insulation, a series of cell-free “control” tests were performed that show the inherent settling and stress relaxation based on the interaction between the insulation and heat pellets alone.
Battery performance, while observed at the macroscale, is primarily governed by the bicontinuous mesoscale network of the active particles and a polymeric conductive binder in its electrodes. Manufacturing processes affect this mesostructure, and therefore battery performance, in ways that are not always clear outside of empirical relationships. Directly studying the role of the mesostructure is difficult due to the small particle sizes (a few microns) and large mesoscale structures. Mesoscale simulation, however, is an emerging technique that allows the investigation into how particle-scale phenomena affect electrode behavior. In this manuscript, we discuss our computational approach for modeling electrochemical, mechanical, and thermal phenomena of lithium-ion batteries at the mesoscale. We review our recent and ongoing simulation investigations and discuss a path forward for additional simulation insights.
The transient transport of electrolytes in thermally-activated batteries is studied using electron probe micro-analysis (EPMA), demonstrating the robust capability of EPMA as a useful tool for studying and quantifying mass transport within porous materials, particularly in difficult environments where classical flow measurements are challenging. By tracking the mobility of bromine and potassium ions from the electrolyte stored within the separator into the lithium silicon anode and iron disulfide cathode, we are able to quantify the transport mechanisms and physical properties of the electrodes including permeability and tortuosity. Due to the micron to submicron scale porous structure of the initially dry anode, a fast capillary pressure driven flow is observed into the anode from which we are able to set a lower bound on the permeability of 10-1 mDarcy. The transport into the cathode is diffusion-limited because the cathode originally contained some electrolyte before activation. Using a transient one-dimensional diffusion model, we estimate the tortuosity of the cathode electrode to be 2.8 ± 0.8.