Publications

Results 51–75 of 90
Skip to search filters

Precision Laser Annealing of Focal Plane Arrays

Bender, Daniel A.; DeRose, Christopher T.; Starbuck, Andrew L.; Verley, Jason V.; Jenkins, Mark W.

We present results from laser annealing experiments in Si using a passively Q-switched Nd:YAG microlaser. Exposure with laser at fluence values above the damage threshold of commercially available photodiodes results in electrical damage (as measured by an increase in photodiode dark current). We show that increasing the laser fluence to values in excess of the damage threshold can result in annealing of a damage site and a reduction in detector dark current by as much as 100x in some cases. A still further increase in fluence results in irreparable damage. Thus we demonstrate the presence of a laser annealing window over which performance of damaged detectors can be at least partially reconstituted. Moreover dark current reduction is observed over the entire operating range of the diode indicating that device performance has been improved for all values of reverse bias voltage. Additionally, we will present results of laser annealing in Si waveguides. By exposing a small (<10 um) length of a Si waveguide to an annealing laser pulse, the longitudinal phase of light acquired in propagating through the waveguide can be modified with high precision, <15 milliradian per laser pulse. Phase tuning by 180 degrees is exhibited with multiple exposures to one arm of a Mach-Zehnder interferometer at fluence values below the morphological damage threshold of an etched Si waveguide. No reduction in optical transmission at 1550 nm was found after 220 annealing laser shots. Modeling results for laser annealing in Si are also presented.

More Details

Silicon photonics platform for national security applications

IEEE Aerospace Conference Proceedings

Lentine, Anthony L.; DeRose, Christopher T.; Davids, Paul D.; Martinez, Nicolas J.D.; Zortman, William A.; Cox, Jonathan A.; Jones, Adam; Trotter, Douglas C.; Pomerene, Andrew P.; Starbuck, Andrew L.; Savignon, Daniel J.; Bauer, Todd B.; Wiwi, Michael W.; Chu, Patrick B.

We review Sandia's silicon photonics platform for national security applications. Silicon photonics offers the potential for extensive size, weight, power, and cost (SWaP-c) reductions compared to existing III-V or purely electronics circuits. Unlike most silicon photonics foundries in the US and internationally, our silicon photonics is manufactured in a trusted environment at our Microsystems and Engineering Sciences Application (MESA) facility. The Sandia fabrication facility is certified as a trusted foundry and can therefore produce devices and circuits intended for military applications. We will describe a variety of silicon photonics devices and subsystems, including both monolithic and heterogeneous integration of silicon photonics with electronics, that can enable future complex functionality in aerospace systems, principally focusing on communications technology in optical interconnects and optical networking.

More Details

Efficient coefficient extraction from doublet resonances in microphotonic resonator transmission functions

CLEO: Science and Innovations, CLEO-SI 2015

Jones, Adam J.; Lentine, Anthony L.; DeRose, Christopher T.; Starbuck, Andrew L.; Pomerene, Andrew P.; Norwood, Robert A.

We develop a computationally efficient and robust algorithm to automatically extract the coefficients of doublet resonances and apply this technique to 418 resonances in ring resonator transmission data with a mean RMS deviation of 7.28 × 10-4. © OSA 2015.

More Details

Ultra-long duration time-resolved spectroscopy with enhanced temporal resolution of high-Q nano-optomechanical modes using interleaved asynchronous optical sampling (I-ASOPS)

Conference on Lasers and Electro-Optics Europe - Technical Digest

Siddiqui, Aleem; Jarecki, Robert L.; Starbuck, Andrew L.; Cox, Jonathan A.

Transient responses of high-Q nano-optomechanical modes are characterized with Interleaved-ASOPS, where pump-induced transients are interrogated with multiple probe pulses. Temporal resolution increases linearly with probe-pulse-number beyond conventional ASOPS, achieving sub-ps resolution over μs durations.

More Details

Precision laser annealing of silicon devices for enhanced electro-optic performance

Proceedings of SPIE - The International Society for Optical Engineering

Bender, Daniel A.; DeRose, Christopher T.; Starbuck, Andrew L.; Verley, Jason V.; Jenkins, Mark W.

We present results from laser annealing experiments in Si using a passively Q-switched Nd:YAG microlaser. Exposure with laser at fluence values above the damage threshold of commercially available photodiodes results in electrical damage (as measured by an increase in photodiode dark current). We show that increasing the laser fluence to values in excess of the damage threshold can result in annealing of a damage site and a reduction in detector dark current by as much as 100x in some cases. A still further increase in fluence results in irreparable damage. Thus we demonstrate the presence of a laser annealing window over which performance of damaged detectors can be at least partially reconstituted. Moreover dark current reduction is observed over the entire operating range of the diode indicating that device performance has been improved for all values of reverse bias voltage. Additionally, we will present results of laser annealing in Si waveguides. By exposing a small (<10 um) length of a Si waveguide to an annealing laser pulse, the longitudinal phase of light acquired in propagating through the waveguide can be modified with high precision, <15 milliradian per laser pulse. Phase tuning by 180 degrees is exhibited with multiple exposures to one arm of a Mach-Zehnder interferometer at fluence values below the morphological damage threshold of an etched Si waveguide. No reduction in optical transmission at 1550 nm was found after 220 annealing laser shots. © 2014 SPIE.

More Details
Results 51–75 of 90
Results 51–75 of 90