Publications

Results 51–60 of 60
Skip to search filters

Adsorption of copper (II) on mesoporous silica: the effect of nano-scale confinement

Geochemical Transactions

Knight, Andrew W.; Tigges, Austen T.; Ilgen, Anastasia G.

Nano-scale spatial confinement can alter chemistry at mineral–water interfaces. These nano-scale confinement effects can lead to anomalous fate and transport behavior of aqueous metal species. When a fluid resides in a nanoporous environments (pore size under 100 nm), the observed density, surface tension, and dielectric constant diverge from those measured in the bulk. To evaluate the impact of nano-scale confinement on the adsorption of copper (Cu2+), we performed batch adsorption studies using mesoporous silica. Mesoporous silica with the narrow distribution of pore diameters (SBA-15; 8, 6, and 4 nm pore diameters) was chosen since the silanol functional groups are typical to surface environments. Batch adsorption isotherms were fit with adsorption models (Langmuir, Freundlich, and Dubinin–Radushkevich) and adsorption kinetic data were fit to a pseudo-first-order reaction model. We found that with decreasing pore size, the maximum surface area-normalized uptake of Cu2+ increased. The pseudo-first-order kinetic model demonstrates that the adsorption is faster as the pore size decreases from 8 to 4 nm. We attribute these effects to the deviations in fundamental water properties as pore diameter decreases. Additionally, these effects are most notable in SBA-15 with a 4-nm pore where the changes in water properties may be responsible for the enhanced Cu mobility, and therefore, faster Cu adsorption kinetics.

More Details
Results 51–60 of 60
Results 51–60 of 60