Publications

Results 26–50 of 60
Skip to search filters

Stability of sea-salt deliquescent brines on heated surfaces of SNF dry storage canisters

International High-Level Radioactive Waste Management 2019, IHLRWM 2019

Bryan, Charles R.; Schindelholz, Eric J.; Knight, Andrew W.; Taylor, Jason M.; Dingreville, Remi P.

For long-term storage, spent nuclear fuel (SNF) is placed in dry storage systems, commonly consisting of welded stainless steel canisters enclosed in ventilated overpacks. Choride-induced stress corrosion cracking (CISCC) of these canisters may occur due to the deliquescence of sea-salt aerosols as the canisters cool. Current experimental and modeling efforts to evaluate canister CISCC assume that the deliquescent brines, once formed, persist on the metal surface, without changing chemical or physical properties. Here we present data that show that magnesium chloride rich-brines, which form first as the canisters cool and sea-salts deliquesce, are not stable at elevated temperatures, degassing HCl and converting to solid carbonates and hydroxychloride phases, thus limiting conditions for corrosion. Moreover, once pitting corrosion begins on the metal surface, oxygen reduction in the cathode region surrounding the pits produces hydroxide ions, increasing the pH under some experimental conditions, leads to precipitation of magnesium hydroxychloride hydrates. Because magnesium carbonates and hydroxychloride hydrates are less deliquescent than magnesium chloride, precipitation of these compounds causes a reduction in the brine volume on the metal surface, potentially limiting the extent of corrosion. If taken to completion, such reactions may lead to brine dry-out, and cessation of corrosion.

More Details

Evaluation of Used Fuel Disposition in Clay-Bearing Rock

Jove Colon, Carlos F.; Payne, Clay P.; Knight, Andrew W.; Ho, Tuan A.; Rutqvist, Jonny R.; kim, Kunwi k.; Xu, Hao X.; Guglielmi, Yves G.; Birkholzer, Jens T.; Caporuscio, Florie C.; Sauer, Kirsten B.; Rock, M.J.R.; Houser, L.M.H.; Jerden, James L.; Gattu, V.G.; Ebert, William E.

The DOE R&D program under the Spent Fuel Waste Science Technology (SFWST) campaign has made key progress in modeling and experimental approaches towards the characterization of chemical and physical phenomena that could impact the long-term safety assessment of nuclear waste disposition in deep clay/shale/argillaceous rock. Interactional collaboration activities such as heater tests, particularly postmortem sample recovery and analysis, have elucidated important information regarding changes in engineered barrier system (EBS) material exposed to years of thermal loads. Chemical and structural analyses of bentonite material from such tests has been key to the characterization of thermal effects affecting clay composition, sorption behavior, and swelling. These are crucial to evaluating the nature and extent of bentonite barrier sacrificial zones in the EBS during the thermal period. Thermal, hydrologic, and chemical data collected from heater tests and laboratory experiments has been used in the development and validation of THMC simulators to model near-field coupled processes affecting engineered and natural barrier materials, particularly during the thermal period. This information leads to the development of simulation approaches (e.g., continuum vs. discrete) to tackle issues related to flow and transport depending on the nature of the host-rock and EBS design concept. This report describes R&D efforts on disposal in argillaceous geologic media through developments of coupled THMC process models, hydrothermal experiments and characterization of clay/metal barrier material interactions, and spent fuel and canister material degradation. Currently, the THM modeling focus is on heater test experiments in argillite rock and gas migration in bentonite as part of international collaboration activities at underground research laboratories (URLs). In addition, field testing at an URL involves probing of fault movement and characterization of fault permeability changes. Analyses of barrier samples (bentonite) from heater tests at URLs provide compositional and structural data to evaluate changes in clay swelling and thermal behavior with distance from the heater surface. Development of a spent fuel degradation model coupled with canister corrosion effects has been centered towards its integration with Generic Disposal System Analysis (GDSA) to describe source term behavior. As in previous milestone deliverables, this report is structured according to various national laboratory contributions describing R&D activities applicable to clay/shale/argillite media.

More Details

Concerted Metal Cation Desorption and Proton Transfer on Deprotonated Silica Surfaces

Journal of Physical Chemistry Letters

Leung, Kevin L.; Criscenti, Louise C.; Knight, Andrew W.; Ilgen, Anastasia G.; Ho, Tuan A.; Greathouse, Jeffery A.

The adsorption equilibrium constants of monovalent and divalent cations to material surfaces in aqueous media are central to many technological, natural, and geochemical processes. Cation adsorption-desorption is often proposed to occur in concert with proton transfer on hydroxyl-covered mineral surfaces, but to date this cooperative effect has been inferred indirectly. This work applies density functional theory-based molecular dynamics simulations of explicit liquid water/mineral interfaces to calculate metal ion desorption free energies. Monodentate adsorption of Na+, Mg2+, and Cu2+ on partially deprotonated silica surfaces are considered. Na+ is predicted to be unbound, while Cu2+ exhibits binding free energies to surface SiO- groups that are larger than those of Mg2+. The predicted trends agree with competitive adsorption measurements on fumed silica surfaces. As desorption proceeds, Cu2+ dissociates one of the H2O molecules in its first solvation shell, turning into Cu2+(OH-)(H2O)3, while Mg remains Mg2+(H2O)6. The protonation state of the SiO- group at the initial binding site does not vary monotonically with cation desorption.

More Details
Results 26–50 of 60
Results 26–50 of 60