Publications

Results 1–25 of 91
Skip to search filters

Fine Pitch Bonding for High Density Interconnects

Hirabayashi, Mieko H.; Jordan, Matthew J.; Hollowell, Andrew E.; Wiwi, Michael W.; Herrera, Sergio A.

CTE (coefficient of thermal expansion) mismatch between two wafers has potential for brittle failure when large areas are bonded on top of one another (wafer to wafer or wafer to die bonds). To address this type of failure, we proposed patterning a polymer around metallic interconnects. For this project, utilized benzo cyclobutene (BCB) to form the bond and accommodate stress. For the metal interconnects, we used indium. To determine the benefits of utilizing BCB, mechanical shear testing of die bonding with just BCB were compared to die bonded just with oxide. These tests demonstrated that BCB, when cured for only 30 minutes and bonded at 200°C, the BCB was able to withstand shear forces similar to oxide. Furthermore, when the BCB did fail, it experienced a more ductile failure, allowing the silicon to crack, rather than shatter. To demonstrate the feasibility of using BCB between indium interconnects, wafers were pattered with layers of BCB with vias for indium or ENEPIG (electroless nickel, electroless palladium, immersion gold). Subsequently, these wafers were pattered with a variety of indium or ENEPIG interconnect pitches, diameters, and heights. These dies were bonded under a variety of conditions, and those that held a bond, were cross-sectioned and imaged. Images revealed that certain bonding conditions allow for interconnects and BCB to achieve a void-less bond and thus demonstrate that utilizing polymers in place of oxide is a feasible way to reduce CTE stress.

More Details

Void-free copper electrodeposition in high aspect ratio, full wafer thickness through-silicon vias with endpoint detection

Journal of the Electrochemical Society

Schmitt, Rebecca P.; Menk, Lyle A.; Baca, Ehren B.; Bower, John E.; Romero, Joseph A.; Jordan, Matthew J.; Jackson, Nathan; Hollowell, Andrew E.

High density interconnects are required for increased input/output for microelectronics applications, incentivizing the development of Cu electrochemical deposition (ECD) processes for high aspect ratio through-silicon vias (TSVs). This work outlines Cu ECD processes for 62.5 μm diameter TSVs, etched into a 625 μm thick silicon substrate, a 10:1 aspect ratio. Cu ECD in high aspect ratio features relies on a delicate balance of electrolyte composition, solution replenishment, and applied voltage. Implementing a CuSO4-H2SO4 electrolyte, which contains suppressor and a low chloride concentration, allows for a tunable relationship between applied voltage and localized deposition in the vias. A stepped potential waveform was applied to move the Cu growth front from the bottom of the via to the top. Sample characterization was performed through mechanical cross-sections and X-ray computed tomography (CT) scans. The CT scans revealed small seam voids in the Cu electrodeposit, and process parameters were tuned accordingly to produce void-free Cu features. During the voltage-controlled experiments, measured current data showed a characteristic current minimum, which was identified as an endpoint detection method for Cu deposition in these vias. We believe this is the first report of this novel endpoint detection method for TSV filling.

More Details

Heterogeneous Integration of Silicon Electronics and Compound Semiconductor Optoelectronics for Miniature RF Photonic Transceivers

Nordquist, Christopher N.; Skogen, Erik J.; Fortuna, S.A.; Hollowell, Andrew E.; Hemmady, Caroline S.; Saugen, J.M.; Forbes, T.; Wood, Michael G.; Jordan, Matthew J.; McClain, Jaime L.; Lepkowski, Stefan M.; Alford, Charles A.; Peake, Gregory M.; Pomerene, Andrew P.; Long, Christopher M.; Serkland, Darwin K.; Dean, Kenneth A.

Abstract not provided.

Tutorial on forming through-silicon vias

Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films

Burkett, Susan L.; Jordan, Matthew J.; Schmitt, Rebecca P.; Menk, Lyle A.; Hollowell, Andrew E.

Through-silicon vias (TSVs) are a critical technology for three-dimensional integrated circuit technology. These through-substrate interconnects allow electronic devices to be stacked vertically for a broad range of applications and performance improvements such as increased bandwidth, reduced signal delay, improved power management, and smaller form-factors. There are many interdependent processing steps involved in the successful integration of TSVs. This article provides a tutorial style review of the following semiconductor fabrication process steps that are commonly used in forming TSVs: deep etching of silicon to form the via, thin film deposition to provide insulation, barrier, and seed layers, electroplating of copper for the conductive metal, and wafer thinning to reveal the TSVs. Recent work in copper electrochemical deposition is highlighted, analyzing the effect of accelerator and suppressor additives in the electrolyte to enable void-free bottom-up filling from a conformally lined seed metal.

More Details

Heterogeneous integration of silicon electronics and compound semiconductor optoelectronics for miniature rf photonic transceivers

ECS Transactions

Nordquist, C.D.; Skogen, Erik J.; Fortuna, S.A.; Hollowell, Andrew E.; Hemmady, C.S.; Saugen, J.M.; Forbes, T.; Wood, M.G.; Jordan, Matthew J.; McClain, Jaime L.; Lepkowski, Stefan M.; Alford, Charles A.; Peake, Gregory M.; Pomerene, Andrew P.; Long, C.M.; Serkland, Darwin K.; Dean, Kenneth A.

Heterogeneous Integration (HI) may enable optoelectronic transceivers for short-range and long-range radio frequency (RF) photonic interconnect using wavelength-division multiplexing (WDM) to aggregate signals, provide galvanic isolation, and reduce crosstalk and interference. Integration of silicon Complementary Metal-Oxide-Semiconductor (CMOS) electronics with InGaAsP compound semiconductor photonics provides the potential for high-performance microsystems that combine complex electronic functions with optoelectronic capabilities from rich bandgap engineering opportunities, and intimate integration allows short interconnects for lower power and latency. The dominant pure-play foundry model plus the differences in materials and processes between these technologies dictate separate fabrication of the devices followed by integration of individual die, presenting unique challenges in die preparation, metallization, and bumping, especially as interconnect densities increase. In this paper, we describe progress towards realizing an S-band WDM RF photonic link combining 180 nm silicon CMOS electronics with InGaAsP integrated optoelectronics, using HI processes and approaches that scale into microwave and millimeter-wave frequencies.

More Details

Thin Film Characterization on Cu/SnAg Solder Interface for 3D Packaging Technologies

MRS Advances

Beers, Kimberly; Hollowell, Andrew E.; Basim, G.B.

Copper is a commonly used interconnect metal in microelectronic interconnects due to its exceptional electrical and thermal properties. Particularly in applications of the 2.5 and 3D integration, Cu is utilized in through-silicon-vias (TSVs) and flip chip interconnects between microelectronic chips for providing miniaturization, lower power and higher performance than current 2D packaging approaches. SnAg capped Cu pillars are a common high-density interconnect technology for flip chip bonding. For these interconnects, specific properties of the Cu surface, such as roughness and cleanliness, are an important factor in the process to ensure quality solder bumps. During electroplating, tight processing parameters must be met so that defects are avoided, and high bump uniformity is achieved. An understanding of the interactions at the solder and Cu pillar interface is needed, based on the electroplating parameters, to determine the best method for populating solder on the wafer surface. In this study, surface treatment techniques such as oxygen plasma cleaning were performed on the Cu surfaces and the SnAg plating chemistry for depositing the solder were evaluated through hull cell testing to qualitatively determine the range of current densities to investigate. It was observed that current density while plating played a large role in solder bump deposition morphology. At the higher current densities greater than 60 mA/cm2, bump height non-uniformity and dendritic growth are observed and at lower current densities, less than or equal to 60 mA/cm2, uniform, continuous bump height occurred.

More Details

Double sided grating fabrication for high energy X-ray phase contrast imaging

Materials Science in Semiconductor Processing

Hollowell, Andrew E.; Arrington, Christian L.; Finnegan, Patrick S.; Musick, Katherine M.; Resnick, Paul J.; Volk, Steve; Dagel, Amber L.

State of the art grating fabrication currently limits the maximum source energy that can be used in lab based x-ray phase contrast imaging (XPCI) systems. In order to move to higher source energies, and image high density materials or image through encapsulating barriers, new grating fabrication methods are needed. In this work we have analyzed a new modality for grating fabrication that involves precision alignment of etched gratings on both sides of a substrate, effectively doubling the thickness of the grating. We have achieved a front-to-backside feature alignment accuracy of 0.5 µm demonstrating a methodology that can be applied to any grating fabrication approach extending the attainable aspect ratios allowing higher energy lab based XPCI systems.

More Details
Results 1–25 of 91
Results 1–25 of 91