Publications

Results 126–150 of 182
Skip to search filters

Ionic aggregation and counterion dynamics in model ionomers

11AIChE - 2011 AIChE Annual Meeting, Conference Proceedings

Hall, Lisa M.; Stevens, Mark J.; Frischknecht, Amalie F.

Ionomers, polymers containing a small fraction of covalently bound ionic groups, have potential as solid, single ion conducting electrolytes in future batteries. However, the ions tend to form aggregates, making counterion diffusion unacceptably slow. A key materials design question is how molecular properties affect ionic aggregation and counterion dynamics. Recent experimental advances have allowed synthesis and extensive characterization of ionomers with a precise, constant spacing of charged groups. Because the molecular architecture is controlled and these materials show increased ionic aggregate ordering versus their randomly spaced analogs, this set of experiments is ideal for direct comparisons with molecular simulations. We perform molecular dynamics simulations of coarse-grained ionomers with either periodically or randomly spaced charged beads. The charged beads are placed either in the polymer backbone (ionenes) or as pendants on the backbone. To understand the range of ionic aggregate morphologies possible in real materials, we vary the spacing of charges along the chain, degree of randomness (from periodic to random block to fully random), and dielectric constant. The well-known "ionomer peak" in the scattering is present in all cases. The peak is significantly more intense for pendant ions with a long periodic spacing of charged beads, which form roughly spherical aggregates. This morphology is in qualitative contrast to the extended aggregates of ionenes that show increased counterion diffusion. Depending on the degree of randomness in spacing of charged beads along the chain, counterion diffusion can increase or decrease versus that of the precisely spaced materials. Possible implications for ionomer electrolyte design will be discussed. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

More Details

Bio-inspired nanocomposite assemblies as smart skin components

Frischknecht, Amalie F.; Edwards, Thayne L.; Achyuthan, Komandoor A.; Brozik, Susan M.

There is national interest in the development of sophisticated materials that can automatically detect and respond to chemical and biological threats without the need for human intervention. In living systems, cell membranes perform such functions on a routine basis, detecting threats, communicating with the cell, and triggering automatic responses such as the opening and closing of ion channels. The purpose of this project was to learn how to replicate simple threat detection and response functions within artificial membrane systems. The original goals toward developing 'smart skin' assemblies included: (1) synthesizing functionalized nanoparticles to produce electrochemically responsive systems within a lipid bilayer host matrices, (2) calculating the energetics of nanoparticle-lipid interactions and pore formation, and (3) determining the mechanism of insertion of nanoparticles in lipid bilayers via imaging and electrochemistry. There are a few reports of the use of programmable materials to open and close pores in rigid hosts such as mesoporous materials using either heat or light activation. However, none of these materials can regulate themselves in response to the detection of threats. The strategies we investigated in this project involve learning how to use programmable nanomaterials to automatically eliminate open channels within a lipid bilayer host when 'threats' are detected. We generated and characterized functionalized nanoparticles that can be used to create synthetic pores through the membrane and investigated methods of eliminating the pores either through electrochemistry, change in pH, etc. We also focused on characterizing the behavior of functionalized gold NPs in different lipid membranes and lipid vesicles and coupled these results to modeling efforts designed to gain an understanding of the interaction of nanoparticles within lipid assemblies.

More Details

Effect of polymer architecture and ionic aggregation on the scattering peak in model ionomers

Physical Review Letters

Hall, Lisa M.; Stevens, Mark J.; Frischknecht, Amalie F.

We perform molecular dynamics simulations of coarse-grained ionomer melts with two different architectures. Regularly spaced charged beads are placed either in the polymer backbone (ionenes) or pendant to it. The ionic aggregate structure is quantified as a function of the dielectric constant. The low wave vector ionomer scattering peak is present in all cases, but is significantly more intense for pendant ions, which form compact, discrete aggregates with liquidlike interaggregate order. This is in qualitative contrast to the ionenes, which form extended aggregates. © 2011 American Physical Society.

More Details

Molecular dynamics simulations of ionic aggregates in a coarse%3CU%2B2010%3Egrained ionomer melt

Hall, Lisa M.; Stevens, Mark J.; Frischknecht, Amalie F.

Ionomers--polymers containing a small fraction of covalently bound ionic groups--have potential application as solid electrolytes in batteries. Understanding ion transport in ionomers is essential for such applications. Due to strong electrostatic interactions in these materials, the ions form aggregates, tending to slow counterion diffusion. A key question is how ionomer properties affect ionic aggregation and counterion dynamics on a molecular level. Recent experimental advances have allowed synthesis and extensive characterization of ionomers with a precise, constant spacing of charged groups, making them ideal for controlled measurement and more direct comparison with molecular simulation. We have used coarse-grained molecular dynamics to simulate such ionomers with regularly spaced charged beads. The charged beads are placed either in the polymer backbone or as pendants on the backbone. The polymers, along with the counterions, are simulated at melt densities. The ionic aggregate structure was determined as a function of the dielectric constant, spacing of the charged beads on the polymer, and the sizes of the charged beads and counterions. The pendant ion architecture can yield qualitatively different aggregate structures from those of the linear polymers. For small pendant ions, roughly spherical aggregates have been found above the glass transition temperature. The implications of these aggregates for ion diffusion will be discussed.

More Details

Three-body interactions in polymer nanocomposites

Frischknecht, Amalie F.

We use the modified iSAFT density functional theory (DFT) to calculate interactions among nanoparticles immersed in a polymer melt. Because a polymer can simultaneously interact with more than two nanoparticles, three-body interactions are important in this system. We treat the nanoparticles as spherical surfaces, and solve for the polymer densities around the nanoparticles in three dimensions. The polymer is modeled as a freely-jointed chain of spherical sites, and all interactions are repulsive. The potential of mean force (PMF) between two nanoparticles displays a minimum at contact due to the depletion effect. The PMF calculated from the DFT agrees nearly quantitatively with that calculated from self-consistent PRISM theory. From the DFT we find that the three-body free energy is significantly different in magnitude than the effective three-body free energy derived from the two-particle PMF.

More Details
Results 126–150 of 182
Results 126–150 of 182