A New Picture of Ionomer Structure and Dynamics
Abstract not provided.
Abstract not provided.
Abstract not provided.
Macromolecules
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Chemical Physics
Abstract not provided.
Journal of Chemical Physics
Abstract not provided.
Abstract not provided.
Soft Matter
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ACS Macro Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Soft Matter.
Abstract not provided.
Macromolecules
Ion-containing polymers have potential as single-ion conducting battery electrolyte materials. Their conductivity is often too low for such applications due to the low dielectric polymer backbone and resulting strong aggregation of ions. We simulate coarse-grained ionomer melts (with explicit counterions) of various polymer architectures to understand the effect of polymer connectivity on the dynamics. We report on the polymer and counterion dynamics as a function of periodically or randomly spaced charged groups, which can be placed in the backbone or pendant to it. The spacer length is also varied. The simulations reveal the mechanism of ion transport, the coupling between counterion and polymer dynamics, and the dependence of the ion dynamics on polymer architecture. Within the ionic aggregrates, ion dynamics is rather fluid and relatively fast. The larger scale dynamics (time and length) depends strongly on the large scale morphology of the ionomer. Systems with percolated clusters have faster counterion diffusion than systems with isolated clusters. In the systems with isolated clusters counterions diffuse through the combination, rearrangement, and separation of neighboring clusters. In this process, counterions move from one cluster to another without ever being separated from a cluster. In percolated systems, the counterions can move similarly without the need for the merging of clusters. Thus, the ion diffusion does not involve a hopping process. The dynamics also depends significantly on the details of the polymer architecture beyond the aggregate morphology. Adding randomness in spacing of the charges can either increase or decrease the ion diffusion, depending on the specific type of random sequence. © 2012 American Chemical Society.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Journal of Chemical Physics.
Abstract not provided.
11AIChE - 2011 AIChE Annual Meeting, Conference Proceedings
Ionomers, polymers containing a small fraction of covalently bound ionic groups, have potential as solid, single ion conducting electrolytes in future batteries. However, the ions tend to form aggregates, making counterion diffusion unacceptably slow. A key materials design question is how molecular properties affect ionic aggregation and counterion dynamics. Recent experimental advances have allowed synthesis and extensive characterization of ionomers with a precise, constant spacing of charged groups. Because the molecular architecture is controlled and these materials show increased ionic aggregate ordering versus their randomly spaced analogs, this set of experiments is ideal for direct comparisons with molecular simulations. We perform molecular dynamics simulations of coarse-grained ionomers with either periodically or randomly spaced charged beads. The charged beads are placed either in the polymer backbone (ionenes) or as pendants on the backbone. To understand the range of ionic aggregate morphologies possible in real materials, we vary the spacing of charges along the chain, degree of randomness (from periodic to random block to fully random), and dielectric constant. The well-known "ionomer peak" in the scattering is present in all cases. The peak is significantly more intense for pendant ions with a long periodic spacing of charged beads, which form roughly spherical aggregates. This morphology is in qualitative contrast to the extended aggregates of ionenes that show increased counterion diffusion. Depending on the degree of randomness in spacing of charged beads along the chain, counterion diffusion can increase or decrease versus that of the precisely spaced materials. Possible implications for ionomer electrolyte design will be discussed. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Abstract not provided.
Journal of the American Chemical Society
Abstract not provided.
Journal of the American Chemical Society
Abstract not provided.
Abstract not provided.
Abstract not provided.
There is national interest in the development of sophisticated materials that can automatically detect and respond to chemical and biological threats without the need for human intervention. In living systems, cell membranes perform such functions on a routine basis, detecting threats, communicating with the cell, and triggering automatic responses such as the opening and closing of ion channels. The purpose of this project was to learn how to replicate simple threat detection and response functions within artificial membrane systems. The original goals toward developing 'smart skin' assemblies included: (1) synthesizing functionalized nanoparticles to produce electrochemically responsive systems within a lipid bilayer host matrices, (2) calculating the energetics of nanoparticle-lipid interactions and pore formation, and (3) determining the mechanism of insertion of nanoparticles in lipid bilayers via imaging and electrochemistry. There are a few reports of the use of programmable materials to open and close pores in rigid hosts such as mesoporous materials using either heat or light activation. However, none of these materials can regulate themselves in response to the detection of threats. The strategies we investigated in this project involve learning how to use programmable nanomaterials to automatically eliminate open channels within a lipid bilayer host when 'threats' are detected. We generated and characterized functionalized nanoparticles that can be used to create synthetic pores through the membrane and investigated methods of eliminating the pores either through electrochemistry, change in pH, etc. We also focused on characterizing the behavior of functionalized gold NPs in different lipid membranes and lipid vesicles and coupled these results to modeling efforts designed to gain an understanding of the interaction of nanoparticles within lipid assemblies.
Physical Review Letters
We perform molecular dynamics simulations of coarse-grained ionomer melts with two different architectures. Regularly spaced charged beads are placed either in the polymer backbone (ionenes) or pendant to it. The ionic aggregate structure is quantified as a function of the dielectric constant. The low wave vector ionomer scattering peak is present in all cases, but is significantly more intense for pendant ions, which form compact, discrete aggregates with liquidlike interaggregate order. This is in qualitative contrast to the ionenes, which form extended aggregates. © 2011 American Physical Society.
Abstract not provided.
Abstract not provided.
Journal of Chemical Physics
Abstract not provided.
Ionomers--polymers containing a small fraction of covalently bound ionic groups--have potential application as solid electrolytes in batteries. Understanding ion transport in ionomers is essential for such applications. Due to strong electrostatic interactions in these materials, the ions form aggregates, tending to slow counterion diffusion. A key question is how ionomer properties affect ionic aggregation and counterion dynamics on a molecular level. Recent experimental advances have allowed synthesis and extensive characterization of ionomers with a precise, constant spacing of charged groups, making them ideal for controlled measurement and more direct comparison with molecular simulation. We have used coarse-grained molecular dynamics to simulate such ionomers with regularly spaced charged beads. The charged beads are placed either in the polymer backbone or as pendants on the backbone. The polymers, along with the counterions, are simulated at melt densities. The ionic aggregate structure was determined as a function of the dielectric constant, spacing of the charged beads on the polymer, and the sizes of the charged beads and counterions. The pendant ion architecture can yield qualitatively different aggregate structures from those of the linear polymers. For small pendant ions, roughly spherical aggregates have been found above the glass transition temperature. The implications of these aggregates for ion diffusion will be discussed.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
We use the modified iSAFT density functional theory (DFT) to calculate interactions among nanoparticles immersed in a polymer melt. Because a polymer can simultaneously interact with more than two nanoparticles, three-body interactions are important in this system. We treat the nanoparticles as spherical surfaces, and solve for the polymer densities around the nanoparticles in three dimensions. The polymer is modeled as a freely-jointed chain of spherical sites, and all interactions are repulsive. The potential of mean force (PMF) between two nanoparticles displays a minimum at contact due to the depletion effect. The PMF calculated from the DFT agrees nearly quantitatively with that calculated from self-consistent PRISM theory. From the DFT we find that the three-body free energy is significantly different in magnitude than the effective three-body free energy derived from the two-particle PMF.
Abstract not provided.
Abstract not provided.
AIChE Annual Meeting, Conference Proceedings
Abstract not provided.