Publications

Results 1–50 of 74
Skip to search filters

The mechanical performance of Sn-Pb solder joints on LTCC substrates

Welding Journal

Vianco, Paul T.; Williams, S.; Kilgo, Alice C.; McKenzie, Bonnie B.; Price, W.; Guerrero, E.

The assembly of ceramic components often uses soldering technologies to attach metal structures to the ceramic base material. Because many suitable solder alloys do not readily wet and spread on ceramics, a metallization layer is deposited on the latter to support wetting and spreading by the molten solder for completion of the joint The metallization layer must be sufficiently robust to retain its integrity through the soldering process as well as not negatively impact the long-term reliability of the joint A study was performed to evaluate the mechanical properties of solder joints made to a 0.200Ti/W-40Cu-2.0Pt-0.375Au (pm) thin-film metallization deposited on low-temperature co-fired ceramic (LTCC) base materials. The solder joints were made with the 63Sn-37Pb solder (wt-%, abbreviated Sn-Pb). A pin pull test was developed to measure the tensile strength of the solder joint as a function of soldering parameters. Failure mode analysis was a critical metric for assessing the roles of interfaces, bulk solder, and the ceramic on mechanical performance. The Sn-Pb solder joints experienced a nominal strength loss with increased severity of the soldering process parameters. The strength decline was attributed to changes in the solder joint microstructure, and not degradation to the thin film structures.

More Details

Effect of thermal annealing on microstructure evolution and mechanical behavior of an additive manufactured AlSi10Mg part

Journal of Materials Research

Yang, Pin Y.; Rodriguez, Mark A.; Deibler, Lisa A.; Jared, Bradley H.; Griego, James J.M.; Kilgo, Alice C.; Allen, Amy A.; Stefan, Daniel K.

The powder-bed laser additive manufacturing (AM) process is widely used in the fabrication of three-dimensional metallic parts with intricate structures, where kinetically controlled diffusion and microstructure ripening can be hindered by fast melting and rapid solidification. Therefore, the microstructure and physical properties of parts made by this process will be significantly different from their counterparts produced by conventional methods. This work investigates the microstructure evolution for an AM fabricated AlSi10Mg part from its nonequilibrium state toward equilibrium state. Special attention is placed on silicon dissolution, precipitate formation, collapsing of a divorced eutectic cellular structure, and microstructure ripening in the thermal annealing process. These events alter the size, morphology, length scale, and distribution of the beta silicon phase in the primary aluminum, and changes associated with elastic properties and microhardness are reported. The relationship between residual stress and silicon dissolution due to changes in lattice spacing is also investigated and discussed.

More Details

Gold-Tin Solder Wetting Behavior for Package Lid Seals

Journal of Electronic Packaging, Transactions of the ASME

Vianco, Paul T.; Kilgo, Alice C.; McKenzie, Bonnie B.

This study examined the cause of nonwetted regions of the gold (Au) finish on iron-nickel (Fe-Ni) alloy lids that seal ceramic packages using the 80Au-20Sn solder (wt %, abbreviated Au-Sn) and their impact on the final lid-to-ceramic frame solder joint. The Auger electron spectroscopy (AES) surface and depth profile techniques identified surface and through-thickness contaminants in the Au metallization layer. In one case, the AES analysis identified background levels of carbon (C) contamination on the surface; however, the depth profile detected Fe and Ni contaminants that originated from the plating process. The Fe and Ni could impede the completion of wetting and spreading to the edge of the Au metallization. The Au layer of lids not exposed to a Au-Sn solder reflow step had significant surface and through-thickness C contamination. Inorganic contaminants were absent. Subsequent simulated reflow processes removed the C contamination from the Au layer without driving Ni diffusion from the underlying solderable layer. An Au metallization having negligible C contamination developed elevated C levels after exposure to a simulated reflow process due to C contamination diffusing into it from the underlying Ni layer. However, the second reflow step removed that contamination from the Au layer, thereby allowing the metallization to support the formation of lid-to-ceramic frame Au-Sn joints without risk to their mechanical strength or hermeticity.

More Details

Interface reactions responsible for run-out in active brazing: Part 1

Welding Journal

Vianco, Paul T.; Walker, Charles A.; De Smet, Dennis J.; Kilgo, Alice C.; McKenzie, Bonnie B.; Grant, Richard P.

The run-out phenomenon was observed in Ag-Cu-Zr active braze joints made between the alumina ceramic and Kovar™ base material. Run-out introduces a significant yield loss by generating functional and/or cosmetic defects in brazements. A prior study identified a correlation between run-out and the aluminum (Al) released by the reduction/oxidation reaction with alumina and aluminum's reaction with the Kovar™ base material. A study was undertaken to understand the fundamental principles of run-out by examining the interface reaction between Ag-xAl filler metals (x = 2,5, and 10 wt-%) and Kovar™ base material. Sessile drop samples were fabricated using brazing temperatures of 965° (T769°F) or 995°C 0823°F) and times of 5 or 20 min. The correlation was made between the degree of wetting and spreading by the sessile drops and the run-out phenomenon. Wetting and spreading increased with Al content (x) of the. Ag-xAl filler metal, but was largely insensitive to the brazing process parameters. The increased Al concentration resulted in higher Al contents of the (Fe, Ni, Co)xAly reaction layer. Run-out was predicted when the filler metal has a locally elevated Al content exceeding 2-5 wt-%. Several mitigation strategies were proposed, based upon these findings.

More Details

3D RoboMET Characterization

Madison, Jonathan D.; Susan, D.F.; Kilgo, Alice C.

The goal of this project is to generate 3D microstructural data by destructive and non-destructive means and provide accompanying characterization and quantitative analysis of such data. This work is a continuing part of a larger effort to relate material performance variability to microstructural variability. That larger effort is called “Predicting Performance Margins” or PPM. In conjunction with that overarching initiative, the RoboMET.3D™ is a specific asset of Center 1800 and is an automated serialsectioning system for destructive analysis of microstructure, which is called upon to provide direct customer support to 1800 and non-1800 customers. To that end, data collection, 3d reconstruction and analysis of typical and atypical microstructures have been pursued for the purposes of qualitative and quantitative characterization with a goal toward linking microstructural defects and/or microstructural features with mechanical response. Material systems examined in FY15 include precipitation hardened 17-4 steel, laser-welds of 304L stainless steel, thermal spray coatings of 304L and geological samples of sandstone.

More Details

Creep behavior of a Sn-Ag-Bi Pb-free solder

Materials

Vianco, Paul; Rejent, Jerome A.; Grazier, J.M.; Kilgo, Alice C.

Compression creep tests were performed on the ternary 91.84Sn-3.33Ag-4.83Bi (wt.%, abbreviated Sn-Ag-Bi) Pb-free alloy. The test temperatures were: -25 °C, 25 °C, 75 °C, 125 °C, and 160 °C (± 0.5 °C). Four loads were used at the two lowest temperatures and five at the higher temperatures. The specimens were tested in the as-fabricated condition or after having been subjected to one of two air aging conditions: 24 hours at either 125 °C or 150 °C. The strain-time curves exhibited frequent occurrences of negative creep and small-scale fluctuations, particularly at the slower strain rates, that were indicative of dynamic recrystallization (DRX) activity. The source of tertiary creep behavior at faster strain rates was likely to also be DRX rather than a damage accumulation mechanism. Overall, the strain-time curves did not display a consistent trend that could be directly attributed to the aging condition. The sinh law equation satisfactorily represented the minimum strain rate as a function of stress and temperature so as to investigate the deformation rate kinetics: dε/dtmin = Asinhn (ασ) exp (-ΔH/RT). The values of α, n, and ΔH were in the following ranges (±95% confidence interval): α, 0.010-0.015 (±0.005 1/MPa); n, 2.2-3.1 (±0.5); and ΔH, 54-66 (±8 kJ/mol). The rate kinetics analysis indicated that short-circuit diffusion was a contributing mechanism to dislocation motion during creep. The rate kinetics analysis also determined that a minimum creep rate trend could not be developed between the as-fabricated versus aged conditions. This study showed that the elevated temperature aging treatments introduced multiple changes to the Sn-Ag-Bi microstructure that did not result in a simple loss ("softening") of its mechanical strength. © 2012 by Sandia Corporation.

More Details

Accelerated aging of Sn-Pb and Pb-free solder joints on hybrid microcircuit assemblies

IBSC 2012 - Proceedings of the 5th International Brazing and Soldering Conference

Vianco, Paul T.; Kilgo, Alice C.; Wroblewski, Brian W.; Zender, Gary L.; Guerrero, E.

The development of Pb-free solutions for the highreliability electronics community necessitates the consideration of hybrid microcircuit (HMC) products. This study used a test vehicle that included both plastic and ceramic packages as well as leaded and area-array solder joints on an alumina substrate. The conductor was a Ag-Pd thick film layer. The shear strength was measured for interconnections made with 63Sn-37Pb (wt.%, abbreviated Sn-Pb) and 95.5Sn-3.0Ag-0.5Cu (Sn-Ag-Cu) solders as a function of isothermal aging, thermal cycling, and thermal shock environments. The area-array packages indicated that solder joint fatigue was not altered significantly in a forward compatibility situation (i.e., Sn-Pb balls and a Sn-Ag-Cu assembly process). Local CTE mismatch fatigue strains are important for solder joints connecting ceramic area array packages to ceramic substrates. The gull-wing lead, SOT plastic package solder joints assembled with the Sn-Ag-Cu solder exhibit a greater strength loss under temperature cycling than did the corresponding Sn-Pb interconnections. Thermal shock is more detrimental to Sn-Pb HMC solder joints than are the equivalent number of thermal cycles. Copyright 2012 ASM International® All rights reserved.

More Details

Pull strength and failure mode analysis of thick film conductors on alumina ceramic for hybrid microcircuit technologies

Materials Science and Technology Conference and Exhibition 2010, MS and T'10

Vianco, Paul T.; Rejent, Jerome A.; Kilgo, Alice C.; Zender, Gary L.

Thick film conductors provide the circuitry for hybrid microcircuit (HMC) assemblies. The integrity of solder joints made to those conductors is a function of the solid-state interface reactions that occur under long-term service environments. A study was performed, which examined the mechanical strength of 63Sn-37Pb (wt.%, Sn-Pb) solder joints made to the thick film conductor, 76Au-21Pt-3Pd (Au-Pt-Pd), on 96% Al2O3 substrates. The Au-Pt-Pd layer was 18±3 μm thick. Isothermal aging accelerated the solder/thick film interface reaction, which resulted in the growth of an intermetallic compound (IMC) layer and consumption of the thick film layer. The aging temperatures were 70°C, 100°C, and 135°C. The aging times were 5-5000 hours. The sheppard's hook pull test was used to assess the strength of the Sn-Pb solder joints at two displacement rates: 10 mm/min and 100 mm/min. A measurable loss of joint strength was observed after aging, which did not generate a great deal of IMC layer growth. The aging effects occurred at the thick film/Al2O3 interface as concluded by other authors. However, the present investigation showed those strength losses to be reversible after more extended aging times at elevated temperature. The strength and failure modes were sensitive to displacement rate when IMC layer development was minimal. Extensive growth of the IMC layer was accompanied by the formation of a Pb-rich layer ahead of it, which was responsible for a gradual decrease in the pull strength. In this case, pull strength and failure mode were less sensitive to displacement rate. The solder joints maintained a nominal level of pull strength, even after nearly all of the thick film conductor had been consumed by IMC layer formation. Copyright © 2010 MS&T'10®.

More Details
Results 1–50 of 74
Results 1–50 of 74