MaxOutProbe: An Algorithm for Increasing the Size of Partially Observed Networks
Abstract not provided.
Abstract not provided.
Abstract not provided.
Post-Moore's law scaling is creating a disruptive shift in simulation workflows, as saving the entirety of raw data to persistent storage becomes expensive. We are moving away from a post-process centric data analysis paradigm towards a concurrent analysis framework, in which raw simulation data is processed as it is computed. Algorithms must adapt to machines with extreme concurrency, low communication bandwidth, and high memory latency, while operating within the time constraints prescribed by the simulation. Furthermore, in- put parameters are often data dependent and cannot always be prescribed. The study of sublinear algorithms is a recent development in theoretical computer science and discrete mathematics that has significant potential to provide solutions for these challenges. The approaches of sublinear algorithms address the fundamental mathematical problem of understanding global features of a data set using limited resources. These theoretical ideas align with practical challenges of in-situ and in-transit computation where vast amounts of data must be processed under severe communication and memory constraints. This report details key advancements made in applying sublinear algorithms in-situ to identify features of interest and to enable adaptive workflows over the course of a three year LDRD. Prior to this LDRD, there was no precedent in applying sublinear techniques to large-scale, physics based simulations. This project has definitively demonstrated their efficacy at mitigating high performance computing challenges and highlighted the rich potential for follow-on re- search opportunities in this space.
Abstract not provided.
Abstract not provided.
Abstract not provided.
WWW 2015 - Proceedings of the 24th International Conference on World Wide Web
Counting the frequency of small subgraphs is a fundamental technique in network analysis across various domains, most notably in bioinformatics and social networks. The special case of triangle counting has received much attention. Getting results for 4-vertex patterns is highly challenging, and there are few practical results known that can scale to massive sizes. Indeed, even a highly tuned enumeration code takes more than a day on a graph with millions of edges. Most previous work that runs for truly massive graphs employ clusters and massive parallelization. We provide a sampling algorithm that provably and accurately approximates the frequencies of all 4-vertex pattern subgraphs. Our algorithm is based on a novel technique of 3-path sampling and a special pruning scheme to decrease the variance in estimates. We provide theoretical proofs for the accuracy of our algorithm, and give formal bounds for the error and confidence of our estimates. We perform a detailed empirical study and show that our algorithm provides estimates within 1% relative error for all subpatterns (over a large class of test graphs), while being orders of magnitude faster than enumeration and other sampling based algorithms. Our algorithm takes less than a minute (on a single commodity machine) to process an Orkut social network with 300 million edges.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
2014 North American Power Symposium, NAPS 2014
Stochastic unit commitment models typically handle uncertainties in forecast demand by considering a finite number of realizations from a stochastic process model for loads. Accurate evaluations of expectations or higher moments for the quantities of interest require a prohibitively large number of model evaluations. In this paper we propose an alternative approach based on using surrogate models valid over the range of the forecast uncertainty. We consider surrogate models based on Polynomial Chaos expansions, constructed using sparse quadrature methods. Considering expected generation cost, we demonstrate that the approach can lead to several orders of magnitude reduction in computational cost relative to using Monte Carlo sampling on the original model, for a given target error threshold.
Finding dense substructures in a graph is a fundamental graph mining operation, with applications in bioinformatics, social networks, and visualization to name a few. Yet most standard formulations of this problem (like clique, quasiclique, k-densest subgraph) are NP-hard. Furthermore, the goal is rarely to nd the \true optimum", but to identify many (if not all) dense substructures, understand their distribution in the graph, and ideally determine a hierarchical structure among them. Current dense subgraph nding algorithms usually optimize some objective, and only nd a few such subgraphs without providing any hierarchy. It is also not clear how to account for overlaps in dense substructures. We de ne the nucleus decomposition of a graph, which represents the graph as a forest of nuclei. Each nucleus is a subgraph where smaller cliques are present in many larger cliques. The forest of nuclei is a hierarchy by containment, where the edge density increases as we proceed towards leaf nuclei. Sibling nuclei can have limited intersections, which allows for discovery of overlapping dense subgraphs. With the right parameters, the nuclear decomposition generalizes the classic notions of k-cores and k-trusses. We give provable e cient algorithms for nuclear decompositions, and empirically evaluate their behavior in a variety of real graphs. The tree of nuclei consistently gives a global, hierarchical snapshot of dense substructures, and outputs dense subgraphs of higher quality than other state-of-theart solutions. Our algorithm can process graphs with tens of millions of edges in less than an hour.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.