Publications

Results 51–100 of 109
Skip to search filters

Dispersion Validation for Flow Involving a Large Structure

Brown, Alexander B.; benavidez, erik b.

The atmospheric dispersion of contaminants in the wake of a large urban structure is a challenging fluid mechanics problem of interest to the scientific and engineering communities. Magnetic Resonance Velocimetry (MRV) is a relatively new technique that leverages diagnostic equipment used primarily by the medical field to make 3D engineering measurements of flow and contaminant dispersal. SIERRA/Fuego, a computational fluid dynamics (CFD) code at Sandia National Labs is employed to make detailed comparisons to the dataset to evaluate the quantitative and qualitative accuracy of the model. The comparison exercise shows good comparison between model and experimental results, with the wake region downstream of the tall building presenting the most significant challenge to the quantitative accuracy of the model. Model uncertainties are assessed through parametric variations. Some observations are made in relation to the future utility of MDV and CFD, and some productive follow-on activities are suggested that can help mature the science of flow modeling and experimental testing.

More Details

Ignition and damage thresholds of materials at extreme incident radiative heat flux

2018 Joint Thermophysics and Heat Transfer Conference

Engerer, Jeffrey D.; Brown, Alexander B.; Christian, Joshua M.

Intense, dynamic radiant heat loads damage and ignite many common materials, but are outside the scope of typical fire studies. Explosive, directed-energy, and nuclear-weapon environments subject materials to this regime of extreme heating. The Solar Furnace at the National Solar Test Facility simulated this environment for an extensive experimental study on the response of many natural and engineered materials. Solar energy was focused onto a spot (∼10 cm2 area) in the center of the tested materials, generating an intense radiant load (∼100 kW m−2 –1000 kW m−2) for approximately 3 seconds. Using video photography, the response of the material to the extreme heat flux was carefully monitored. The initiation time of various events was monitored, including charring, pyrolysis, ignition, and melting. These ignition and damage thresholds are compared to historical ignition results predominantly for black, α-cellulose papers. Reexamination of the historical data indicates ignition behavior is predicted from simplified empirical models based on thermal diffusion. When normalized by the thickness and the thermal properties, ignition and damage thresholds exhibit comparable trends across a wide range of materials. This technique substantially reduces the complexity of the ignition problem, improving ignition models and experimental validation.

More Details

Spatially resolved analysis of material response to destructive environments utilizing three-dimensional scans

2018 Joint Thermophysics and Heat Transfer Conference

Engerer, Jeffrey D.; Brown, Alexander B.

The surface topology of a solid subjected to destructive environments is often difficult to quantify. In thermal environments, the size and shape of the solid changes as it pyrolyzes, ablates, warps, or chars. Quantitative descriptions of such responses are valuable for data reporting and model validation. In this work, a three-dimensional scanner is evaluated for non-destructive material analysis. The scans spatially resolve the response of materials to a high-heat-flux environment. To account for the effect of distortion induced in thin materials, back-side scans of the sample are used to characterize the displacement of the bulk material. Data spanning the area of the sample, rather than using a net or average quantity, enhances the evaluation of the crater formed by the incident flux. The 3D reconstruction of the sample also provides the ability to perform volumetric calculations. The data obtained from this methodology may be useful for characterizing materials exposed to a variety of destructive environments.

More Details

Flash ignition tests at the national solar thermal test facility

2018 Joint Thermophysics and Heat Transfer Conference

Ricks, Allen J.; Brown, Alexander B.; Christian, Joshua M.

Nuclear weapon airbursts can create extreme radiative heat fluxes for a short duration. The radiative heat transfer from the fireball can damage and ignite materials in a region that extends beyond the zone damaged by the blast wave itself. Directed energy weapons also create extreme radiative heat fluxes. These scenarios involve radiative fluxes much greater than the environments typically studied in flammability and ignition tests. Furthermore, the vast majority of controlled experiments designed to obtain material response and flammability data at high radiative fluxes have been performed at relatively small scales (order 10 cm2 area). A recent series of tests performed on the Solar Tower at the National Solar Thermal Test Facility exposed objects and materials to fluxes of 100 – 2,400 kW/m2 at a much larger scale (≈1 m2 area). This paper provides an overview of testing performed at the Solar Tower for a variety of materials including aluminum, fabric, and two types of plastics. Tests with meter-scale objects such as tires and chairs are also reported, highlighting some potential effects of geometry that are difficult to capture in small-scale tests. The aluminum sheet melted at the highest heat flux tested. At the same flux, the tire ignited but the flames were not sustained when the external heat flux was removed; the damage appeared to be limited to the outer portion of the tire, and internal pressure was maintained.

More Details

Mass-loss measurements on solid materials after pulsed radiant heating at high heat flux

10th U.S. National Combustion Meeting

Engerer, Jeffrey D.; Brown, Alexander B.; Christian, Joshua M.

When exposed to a strong radiant heat source (>1,000 kW/m2), combustible materials pyrolyze and ignite under certain conditions. Studies of this nature are scarce, yet important for some applications. Pyrolysis models derived at lower flux conditions do not necessarily extrapolate well to high-heat-flux conditions. The material response is determined by a complex interplay of thermal and chemical transport phenomena, which are often difficult to model. To obtain model validation data at high-heat-flux conditions (up to 2500 kW/m2), experiments on a variety of organic and engineered materials were performed at the National Solar Thermal Test Facility at Sandia National Laboratories. Mass loss during the short duration (2-4 sec) heat pulse was determined using the pre- and post-test weight. The mass-loss data were fairly linear in the fluence range of 200-6000 kJ/m2. When divided into subsets based on material types, the mass loss was similar at the peak flux/fluence condition for engineered polymers (≈1 g) and organic materials (≈2.5 g), although some exceptions exist (PMMA, dry pine needles). Statistical correlations were generated and used to evaluate the significance of the observed trends. These results contribute to the validation data for simulating fires and ignition resulting from very high incident heat flux.

More Details

Numerical study of pyrolysis and combustion of a carbon fiber-epoxy composite

10th U.S. National Combustion Meeting

Koo, Heeseok K.; Brown, Alexander B.; Voskuilen, Tyler V.; Pierce, Flint P.

With growing use of carbon fiber-epoxy in transportation systems, it is important to understand fire reaction properties of the composite to ensure passenger safety. Recently, a micro-scale pyrolysis study and macro-scale fire tests were performed using carbon fiber-epoxy at Sandia National Laboratories. Current work focuses on numerical modeling of the material conversion, pyrolysis, and gas-phase combustion that replicate the experiments. Large-eddy simulations (LES) and eddy-dissipation concept (EDC) approach are incorporated in the gas phase along with multiple relevant reaction model methods in the solid phase. The numerical methods that use multi-step pyrolysis rate expressions are validated by thermogravimetric analysis (TGA) results. The pyrolyzed fuel components participate in gas-phase combustion using a turbulent combustion model. The multi-phase combustion capability was further assessed using two cases: a single particle reaction and a solid panel exposed to strong radiant heat. The panel fire test indicates that the model accurately reproduces panel temperature profile while a weaker oxidation is predicted.

More Details

NSRD-11: Computational Capability to Substantiate DOE-HDBK-3010 Data

Louie, David L.; Brown, Alexander B.; Gelbard, Fred G.; Bignell, John B.; Pierce, Flint P.; Voskuilen, Tyler V.; Rodriguez, Salvador B.; Dingreville, Remi P.; Zepper, Ethan T.; Juan, Pierre-Alexandre J.; Le, San L.; Gilkey, Lindsay N.

Safety basis analysts throughout the U.S. Department of Energy (DOE) complex rely heavily on the information provided in the DOE Handbook, DOE - HDBK - 3010, Airborne Release Fractions/Rates and Respirable Fractions for Nonreactor Nuclear Facilities, to determine radionuclide source terms. In calculating source terms, analysts tend to use the DOE Handbook's bounding values on airborne release fractions (ARFs) and respirable fractions (RFs) for various categories of insults (representing potential accident release categories). This is typically due to both time constraints and the avoidance of regulatory critique. Unfortunately, these bounding ARFs/RFs represent extremely conservative values. Moreover, they were derived from very limited small-scale bench/laboratory experiments and/or from engineered judgment. Thus, the basis for the data may not be representative of the actual unique accident conditions and configurations being evaluated. The goal of this research is to develop a more accurate and defensible method to determine bounding values for the DOE Handbook using state-of-art multi-physics-based computer codes. This enables us to better understand the fundamental physics and phenomena associated with the types of accidents in the handbook. In this year, this research included improvements of the high-fidelity codes to model particle resuspension and multi-component evaporation for fire scenarios. We also began to model ceramic fragmentation experiments, and to reanalyze the liquid fire and powder release experiments that were done last year. The results show that the added physics better describes the fragmentation phenomena. Thus, this work provides a low-cost method to establish physics-justified safety bounds by taking into account specific geometries and conditions that may not have been previously measured and/or are too costly to perform.

More Details

Particle resuspension simulation capability to substantiate DOE-HDBK-3010 Data

Transactions of the American Nuclear Society

Voskuilen, Tyler V.; Pierce, Flint P.; Brown, Alexander B.; Gelbard, Fred G.; Louie, David L.

In this work we have presented a particle resuspension model implemented in the SNL code SIERRA/Fuego, which can be used to model particle dispersal and resuspension from surfaces. The method demonstrated is applicable to a class of particles, but would require additional parametric fits or physics models for extension to other applications, such as wetted particles or walls. We have demonstrated the importance of turbulent variations in the wall shear stress when considering resuspension, and implemented both shear stress variation models and stochastic resuspension models (not shown in this work). These models can be used in simulations with of physically realistic scenarios to augment lab-scale DOE Handbook data for airborne release fractions and respirable fractions in order to provide confidences for safety analysts and facility designers to apply in their analyses at DOE sites. Future work on this topic will involve validation of the presented model against experimental data and extension of the empirical models to be applicable to different classes of particles and surfaces.

More Details

NSRD-06. Computational Capability to Substantiate DOE-HDBK-3010 Data

Louie, David L.; Brown, Alexander B.

Safety basis analysts throughout the U.S. Department of Energy (DOE) complex rely heavily on the information provided in the DOE Hand book, DOE-HDBK-3010, Airborne Release Fractions/Rates and Resp irable Fractions for Nonreactor Nuclear Facilities , to determine source terms. In calcula ting source terms, analysts tend to use the DOE Handbook's bounding values on airbor ne release fractions (ARFs) and respirable fractions (RFs) for various cat egories of insults (representing potential accident release categories). This is typica lly due to both time constraints and the avoidance of regulatory critique. Unfort unately, these bounding ARFs/RFs represent extremely conservative values. Moreover, th ey were derived from very limited small- scale table-top and bench/labo ratory experiments and/or fr om engineered judgment. Thus the basis for the data may not be re presentative to the actual unique accident conditions and configura tions being evaluated. The goal of this res earch is to develop a more ac curate method to identify bounding values for the DOE Handbook using the st ate-of-art multi-physics-based high performance computer codes. This enable s us to better understand the fundamental physics and phenomena associated with the ty pes of accidents for the data described in it. This research has examined two of the DOE Handbook's liquid fire experiments to substantiate the airborne release frac tion data. We found th at additional physical phenomena (i.e., resuspension) need to be included to derive bounding values. For the specific cases of solid powder under pre ssurized condition and mechanical insult conditions the codes demonstrated that we can simulate the phenomena. This work thus provides a low-cost method to establis h physics-justified sa fety bounds by taking into account specific geometri es and conditions that may not have been previously measured and/or are too costly to do so.

More Details
Results 51–100 of 109
Results 51–100 of 109