!POLYMER BEHAVIOR IN HIGH PRESSURE HYDROGEN HELIUM AND ARGON ENVIRONMENTS AS APPLICABLE TO THE HYDROGEN INFRASTRUCTURE
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The Sandia S-CO2 Recompression Closed Brayton Cycle (RCBC) utilizes a series of gas foil bearings in its turbine-alternator-compressors. At high shaft rotational speed these bearings allow the shaft to ride on a cushion of air. Conversely, during startup and shutdown, the shaft rides along the foil bearing surface. Low-friction coatings are used on bearing surfaces in order to facilitate rotation during these periods. An experimental program was initiated to elucidate the behavior of coated bearing foils in the harsh environments of this system. A test configuration was developed enabling long duration exposure tests, followed by a range of analyses relevant to their performance in a bearing. This report provides a detailed overview of this work. The results contained herein provide valuable information in selecting appropriate coatings for more advanced future bearing-rig tests at the newly established test facility in Sandia-NM.
The supercritical carbon dioxide (S-CO2) Brayton Cycle has gained significant attention in the last decade as an advanced power cycle capable of achieving high efficiency power conversion. Sandia National Laboratories, with support from the U.S. Department of Energy Office of Nuclear Energy (US DOE-NE), has been conducting research and development in order to deliver a technology that is ready for commercialization. Root cause analysis has been performed on the Recompression Loop at Sandia National Laboratories. It was found that particles throughout the loop are stainless steel, likely alloy 316 based upon the elemental composition. Deployment of a filter scheme is underway to both protect the turbomachinery and also for purposes of determining the specific cause for the particulate. Shake down tests of electric resistance (ER) as a potential in-situ monitoring scheme shows promise in high temperature systems. A modified instrument was purchased and held at 650°C for more than 1.5 months to date without issue. Quantitative measurements of this instrument will be benchmarked against witness samples in the future, but all qualitative trends to date are as to be expected. ER is a robust method for corrosion monitoring, but very slow at responding and can take several weeks under conditions to see obvious changes in behavior. Electrochemical noise was identified as an advanced technique that should be pursued for the ability to identify transients that would lead to poor material performance.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Surface and Coatings Technology
The performance of Y2O3-stabilized ZrO2 (YSZ), Y2O3, and Al2O3 plasma sprayed coatings are investigated for their ability to prevent attack of Haynes 230 by a near-eutectic Cu-Mg-Si metallic phase change material (PCM) in a closed environment at 820 °C. Areas where coatings failed were identified with optical and scanning electron microscopy, while chemical interactions were clarified through elemental mapping using electron microprobe analysis. Despite its susceptibility to reduction by Mg, the Al2O3 coating performed well while the YSZ and Y2O3 coating showed clear signs of failure. Due to a lack of reliable melting in the PCM, these results are attributed to the evolution of gaseous Mg leading to the formation of MgO and MgAl2O4.
Abstract not provided.
Abstract not provided.
The supercritical carbon dioxide (S - CO2) Brayton Cycle has gained significant attention in the last decade as an advanced power cycle capab le of achieving high efficiency power conversion. Sandia National Laboratories, with support from the U.S. Department of Energy Office of Nuclear Energy (US DOE - NE), has been conducting research and development in order to deliver a technology that is rea dy for commercialization. There are a wide range of materials related challenges that must be overcome for the success of this technology. At Sandia, recent work has focused on the following main areas: (1) Investigating the potential for system cost re duction through the introduction of low cost alloys in low temperature loop sections, (2) Identifying material options for 10MW RCBC systems, (3) Understanding and resolving turbine degradation, (4) Identifying gas foil bearing behavior in CO 2 , and (5) Ide ntifying the influence of gas chemistry on alloy corrosion. Progress in each of these areas is provided in this report.
Abstract not provided.
Abstract not provided.
Metallurgical and Materials Transactions. E, Materials for Energy Systems
The systematic development of microstructure, solidification characteristics, and heat of solidification with composition in copper-silicon-magnesium alloys for thermal energy storage is presented. Differential scanning calorimetry was used to relate the thermal characteristics to microstructural development in the investigated alloys and clarifies the location of one of the terminal three-phase eutectics. Repeated thermal cycling highlights the thermal storage stability of the transformation through multiple melting events. In conclusion, two near-terminal eutectic alloys display high enthalpies of solidification, relatively narrow melting ranges, and stable transformation hysteresis behaviors suited to thermal energy storage.
AIP Conference Proceedings
Dish-Stirling systems are a strong candidate to meet cost production goals for solar thermal power production. Thermal energy storage improves the capacity factor of thermal power systems; copper-silicon-magnesium eutectic alloys have been investigated as potential latent heat storage materials. This work examines the ability of commercially available plasma spray coatings to serve as protective barriers with these alloys, while highlighting mechanistic insights into materials for latent heat storage systems. Computed tomography was leveraged as a rapid screening tool to assess the presence of localized attack in tested coatings.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report outlines the thermodynamics of a supercritical carbon dioxide (sCO2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related to both Helium and to sCO2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation
American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
Polymeric materials have played a significant role in the adoption of a multi-materials approach towards the development of a safe and cost-effective solution for hydrogen fuel storage in Fuel Cell Vehicles (FCVs). Numerous studies exist with regards to the exposure of polymeric materials to gaseous hydrogen as applicable to the hydrogen infrastructure and related compression, storage, delivery, and dispensing operations of hydrogen at fueling stations. However, the behavior of these soft materials under high pressure hydrogen environments has not been well understood. This study involves exposure of select thermoplastic and elastomeric polymers to high pressure hydrogen (70-100 MPa) under static, isothermal, and isobaric conditions followed by characterization of physical properties and mechanical performance. Special attempt has been made to explain hydrogen effects on polymer properties in terms of polymer structure-property relationships, and also understand the influential role played by additives such as fillers, plasticizers, and processing AIDS in polymers exposed to hydrogen. Efforts have also been focused on deriving suitable conditions of static testing in high pressure hydrogen environments as a valuable part of developing a suitable test methodology for such systems. Understanding the relationships between polymer composition and microstructure, time of exposure, rate of depressurization, purge and exposure conditions, etc. in this simple study will help better define the test parameters for upcoming high pressure cycling experiments in hydrogen.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.