Publications

Results 26–41 of 41
Skip to search filters

Artificial Diversity and Defense Security (ADDSec) Final Report

Chavez, Adrian R.; Hamlet, Jason H.; Stout, William M.S.

Critical infrastructure systems continue to foster predictable communication patterns and static configurations over extended periods of time. The static nature of these systems eases the process of gathering reconnaissance information that can be used to design, develop, and launch attacks by adversaries. In this research effort, the early phases of an attack vector will be disrupted by randomizing application port numbers, IP addresses, and communication paths dynamically through the use of overlay networks within Industrial Control Systems (ICS). These protective measures convert static systems into "moving targets," adding an additional layer of defense. Additionally, we have developed a framework that automatically detects and defends against threats within these systems using an ensemble of machine learning algorithms that classify and categorize abnormal behavior. Our proof-of-concept has been demonstrated within a representative ICS environment. Performance metrics of our proof-of-concept have been captured with latency impacts of less than a millisecond, on average.

More Details

Trustworthy design architecture: Cyber-physical system

Proceedings - International Carnahan Conference on Security Technology

Choi, Sung N.; Chavez, Adrian R.; Torres, Marcos P.; Kwon, Cheolhyeon; Hwang, Inseok

Conventional cyber defenses require continual maintenance: virus, firmware, and software updates; costly functional impact tests; and dedicated staff within a security operations center. The conventional defenses require access to external sources for the latest updates. The whitelisted system, however, is ideally a system that can sustain itself freed from external inputs. Cyber-Physical Systems (CPS), have the following unique traits: digital commands are physically observable and verifiable; possible combinations of commands are limited and finite. These CPS traits, combined with a trust anchor to secure an unclonable digital identity (i.e., digitally unclonable function [DUF] - Patent Application #15/183,454; CodeLock), offers an excellent opportunity to explore defenses built on whitelisting approach called 'Trustworthy Design Architecture (TDA).' There exist significant research challenges in defining what are the physically verifiable whitelists as well as the criteria for cyber-physical traits that can be used as the unclonable identity. One goal of the project is to identify a set of physical and/or digital characteristics that can uniquely identify an endpoint. The measurements must have the properties of being reliable, reproducible, and trustworthy. Given that adversaries naturally evolve with any defense, the adversary will have the goal of disrupting or spoofing this process. To protect against such disruptions, we provide a unique system engineering technique, when applied to CPSs (e.g., nuclear processing facilities, critical infrastructures), that will sustain a secure operational state without ever needing external information or active inputs from cybersecurity subject-matter experts (i.e., virus updates, IDS scans, patch management, vulnerability updates). We do this by eliminating system dependencies on external sources for protection. Instead, all internal communication is actively sealed and protected with integrity, authenticity and assurance checks that only cyber identities bound to the physical component can deliver. As CPSs continue to advance (i.e., IoTs, drones, ICSs), resilient-maintenance free solutions are needed to neutralize/reduce cyber risks. TDA is a conceptual system engineering framework specifically designed to address cyber-physical systems that can potentially be maintained and operated without the persistent need or demand for vulnerability or security patch updates.

More Details

Evaluation of Roadmap to Achieve Energy Delivery Systems Cybersecurity

Chavez, Adrian R.

The Department of Energy/Office of Electricity Delivery and Energy Reliability (DOE/OE) Cybersecurity for Energy Delivery Systems (CEDS) program is currently evaluating the Roadmap to Achieve Energy Delivery Systems Cybersecurity document that sets a vision and outlines a set of milestones. The milestones are divided into five strategic focus areas that include: 1. Build a Culture of Security; 2. Assess and Monitor Risk; 3. Develop and Implement New Protective Measures to Reduce Risk; 4. Manage Incidents; and 5. Sustain Security Improvements. The most current version of the roadmap was last updated in September of 2016. Sandia National Laboratories (SNL) has been tasked with revisiting the roadmap to update the current state of energy delivery systems cybersecurity protections. SNL is currently working with previous and current partners to provide feedback on which of the roadmap milestones have been met and to identify any preexisting or new gaps that are not addressed by the roadmap. The specific focus areas SNL was asked to evaluate are: 1. Develop and Implement New Protective Measures to Reduce Risk and 2. Sustain Security Improvements. SNL has formed an Industry Advisory Board (IAB) to assist in answering these questions. The IAB consists of previous partners on past CEDS funded efforts as well as new collaborators that have unique insights into the current state of cybersecurity within energy delivery systems. The IAB includes asset owners, utilities and vendors of control systems. SNL will continue to maintain regular communications with the IAB to provide various perspectives on potential future updates to further improve the breadth of cybersecurity coverage of the roadmap.

More Details

Techniques for the dynamic randomization of network attributes

Proceedings - International Carnahan Conference on Security Technology

Chavez, Adrian R.; Stout, William M.S.; Peisert, Sean

Critical infrastructure control systems continue to foster predictable communication paths and static configurations that allow easy access to our networked critical infrastructure around the world. This makes them attractive and easy targets for cyber-attack. We have developed technologies that address these attack vectors by automatically reconfiguring network settings. Applying these protective measures will convert control systems into «moving targets» that proactively defend themselves against attack. This «Moving Target Defense» (MTD) revolves about the movement of network reconfiguration, securely communicating reconfiguration specifications to other network nodes as required, and ensuring that connectivity between nodes is uninterrupted. Software-defined Networking (SDN) is leveraged to meet many of these goals. Our MTD approach eliminates adversaries targeting known static attributes of network devices and systems, and consists of the following three techniques: (1) Network Randomization for TCP/UDP Ports; (2) Network Randomization for IP Addresses; (3) Network Randomization for Network Paths In this paper, we describe the implementation of the aforementioned technologies. We also discuss the individual and collective successes for the techniques, challenges for deployment, constraints and assumptions, and the performance implications for each technique.

More Details

Network Randomization and Dynamic Defense for Critical Infrastructure Systems

Chavez, Adrian R.; Martin, Mitchell T.; Hamlet, Jason H.; Stout, William M.S.; Lee, Erik L.

Critical Infrastructure control systems continue to foster predictable communication paths, static configurations, and unpatched systems that allow easy access to our nation's most critical assets. This makes them attractive targets for cyber intrusion. We seek to address these attack vectors by automatically randomizing network settings, randomizing applications on the end devices themselves, and dynamically defending these systems against active attacks. Applying these protective measures will convert control systems into moving targets that proactively defend themselves against attack. Sandia National Laboratories has led this effort by gathering operational and technical requirements from Tennessee Valley Authority (TVA) and performing research and development to create a proof-of-concept solution. Our proof-of-concept has been tested in a laboratory environment with over 300 nodes. The vision of this project is to enhance control system security by converting existing control systems into moving targets and building these security measures into future systems while meeting the unique constraints that control systems face.

More Details

Emerging techniques for field device security

IEEE Security and Privacy

Schwartz, Moses D.; Mulder, John M.; Chavez, Adrian R.; Allan, Benjamin A.

Industrial control systems (ICSs) rely on embedded devices to control essential processes. State-of-the-art security solutions can't detect attacks on these devices at the hardware or firmware level. To improve ICS cybersecurity, defensive measures should focus on inspectability, trustworthiness, and diversity.

More Details

OPSAID improvements and capabilities report

Chavez, Adrian R.; Halbgewachs, Ronald D.

Process Control System (PCS) and Industrial Control System (ICS) security is critical to our national security. But there are a number of technological, economic, and educational impediments to PCS owners implementing effective security on their systems. Sandia National Laboratories has performed the research and development of the OPSAID (Open PCS Security Architecture for Interoperable Design), a project sponsored by the US Department of Energy Office of Electricity Delivery and Energy Reliability (DOE/OE), to address this issue. OPSAID is an open-source architecture for PCS/ICS security that provides a design basis for vendors to build add-on security devices for legacy systems, while providing a path forward for the development of inherently-secure PCS elements in the future. Using standardized hardware, a proof-of-concept prototype system was also developed. This report describes the improvements and capabilities that have been added to OPSAID since an initial report was released. Testing and validation of this architecture has been conducted in another project, Lemnos Interoperable Security Project, sponsored by DOE/OE and managed by the National Energy Technology Laboratory (NETL).

More Details

Modeling and simulation for cyber-physical system security research, development and applications

McDonald, Michael J.; Atkins, William D.; Mulder, John M.; Richardson, Bryan T.; Cassidy, Regis H.; Chavez, Adrian R.; Pattengale, Nicholas D.; Pollock, Guylaine M.; Urrea, Jorge M.; Schwartz, Moses D.

This paper describes a new hybrid modeling and simulation architecture developed at Sandia for understanding and developing protections against and mitigations for cyber threats upon control systems. It first outlines the challenges to PCS security that can be addressed using these technologies. The paper then describes Virtual Control System Environments (VCSE) that use this approach and briefly discusses security research that Sandia has performed using VCSE. It closes with recommendations to the control systems security community for applying this valuable technology.

More Details

OPSAID Initial Design and Testing Report

Hurd, Steven A.; Stamp, Jason E.; Chavez, Adrian R.

Process Control System (PCS) security is critical to our national security. Yet, there are a number of technological, economic, and educational impediments to PCS owners implementing effective security on their systems. OPSAID (Open PCS Security Architecture for Interoperable Design), a project sponsored by the US Department of Energy's Office of Electricity Delivery and Reliability, aims to address this issue through developing and testing an open source architecture for PCS security. Sandia National Laboratories, along with a team of PCS vendors and owners, have developed and tested this PCS security architecture. This report describes their progress to date.2 AcknowledgementsThe authors acknowledge and thank their colleagues for their assistance with the OPSAID project.Sandia National Laboratories: Alex Berry, Charles Perine, Regis Cassidy, Bryan Richardson, Laurence PhillipsTeumim Technical, LLC: Dave TeumimIn addition, the authors are greatly indebted to the invaluable help of the members of the OPSAID Core Team. Their assistance has been critical to the success and industry acceptance of the OPSAID project.Schweitzer Engineering Laboratory: Rhett Smith, Ryan Bradetich, Dennis GammelTelTone: Ori Artman Entergy: Dave Norton, Leonard Chamberlin, Mark AllenThe authors would like to acknowledge that the work that produced the results presented in this paper was funded by the U.S. Department of Energy/Office of Electricity Delivery and Energy Reliability (DOE/OE) as part of the National SCADA Test Bed (NSTB) Program. Executive SummaryProcess control systems (PCS) are very important for critical infrastructure and manufacturing operations, yet cyber security technology in PCS is generally poor. The OPSAID (Open PCS (Process Control System) Security Architecture for Interoperable Design) program is intended to address these security shortcomings by accelerating the availability and deployment of comprehensive security technology for PCS, both for existing PCS and inherently secure PCS in the future. All activities are closely linked to industry outreach and advisory efforts.Generally speaking, the OPSAID project is focused on providing comprehensive security functionality to PCS that communicate using IP. This is done through creating an interoperable PCS security architecture and developing a reference implementation, which is tested extensively for performance and reliability.This report first provides background on the PCS security problem and OPSAID, followed by goals and objectives of the project. The report also includes an overview of the results, including the OPSAID architecture and testing activities, along with results from industry outreach activities. Conclusion and recommendation sections follow. Finally, a series of appendices provide more detailed information regarding architecture and testing activities.Summarizing the project results, the OPSAID architecture was defined, which includes modular security functionality and corresponding component modules. The reference implementation, which includes the collection of component modules, was tested extensively and proved to provide more than acceptable performance in a variety of test scenarios. The primary challenge in implementation and testing was correcting initial configuration errors.OPSAID industry outreach efforts were very successful. A small group of industry partners were extensively involved in both the design and testing of OPSAID. Conference presentations resulted in creating a larger group of potential industry partners.Based upon experience implementing and testing OPSAID, as well as through collecting industry feedback, the OPSAID project has done well and is well received. Recommendations for future work include further development of advanced functionality, refinement of interoperability guidance, additional laboratory and field testing, and industry outreach that includes PCS owner education. 4 5 --This page intentionally left blank --

More Details

Applying New Network Security Technologies to SCADA Systems

Hurd, Steven A.; Stamp, Jason E.; Duggan, David P.; Chavez, Adrian R.

Supervisory Control and Data Acquisition (SCADA) systems for automation are very important for critical infrastructure and manufacturing operations. They have been implemented to work in a number of physical environments using a variety of hardware, software, networking protocols, and communications technologies, often before security issues became of paramount concern. To offer solutions to security shortcomings in the short/medium term, this project was to identify technologies used to secure "traditional" IT networks and systems, and then assess their efficacy with respect to SCADA systems. These proposed solutions must be relatively simple to implement, reliable, and acceptable to SCADA owners and operators. 4This page intentionally left blank.

More Details
Results 26–41 of 41
Results 26–41 of 41