High-Gain Magnetized Liner Inertial Fusion (High-Gain MagLif)
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Laser-accelerated proton beams can be used in a variety of applications, e.g. ultrafast radiography of dense objects or strong electromagnetic fields. Therefore high energies of tens of MeV are required. We report on proton-acceleration experiments with a 150 TW laser system using mm-sized thin foils and mass-reduced targets of various thicknesses. Thin- foil targets yielded maximum energies of 50 MeV. A further reduction of the target dimensions from mm-size to 250 x 250 x 25 microns increased the maximum proton energy to >65 MeV, which is comparable to proton energies measured only at higher-energy, Petawatt-class laser systems. The dependence of the maximum energy on target dimensions was investigated, and differences between mm-sized thin foils and mass-reduced targets will be reported.
Abstract not provided.
To extend the backlighting capabilities for Sandia's Z-Accelerator, Z-Petawatt, a laser which can provide laser pulses of 500 fs length and up to 120 J (100TW target area) or up to 450 J (Z / Petawatt target area) has been built over the last years. The main mission of this facility focuses on the generation of high energy X-rays, such as tin Ka at 25 keV in ultra-short bursts. Achieving 25 keV radiographs with decent resolution and contrast required addressing multiple problems such as blocking of hot electrons, minimization of the source, development of suitable filters, and optimization of laser intensity. Due to the violent environment inside of Z, an additional very challenging task is finding massive debris and radiation protection measures without losing the functionality of the backlighting system. We will present the first experiments on 25 keV backlighting including an analysis of image quality and X-ray efficiency.
To extend the backlighting capabilities for Sandia's Z-Accelerator, Z-Petawatt, a laser which can provide laser pulses of 500 fs length and up to 120 J (100TW target area) or up to 450 J (Z/Petawatt target area) has been built over the last years. The main mission of this facility focuses on the generation of high energy X-rays, such as tin K{alpha} at 25 keV in ultra-short bursts. Achieving 25 keV radiographs with decent resolution and contrast required addressing multiple problems such as blocking of hot electrons, minimization of the source, development of suitable filters, and optimization of laser intensity. Due to the violent environment inside of Z, an additional very challenging task is finding massive debris and radiation protection measures without losing the functionality of the backlighting system. We will present the first experiments on 25 keV backlighting including an analysis of image quality and X-ray efficiency.
Abstract not provided.
Under the auspices of the Science of Extreme Environments LDRD program, a <2 year theoretical- and computational-physics study was performed (LDRD Project 130805) by Guy R Bennett (formally in Center-01600) and Adam B. Sefkow (Center-01600): To investigate novel target designs by which a short-pulse, PW-class beam could create a brighter K{alpha} x-ray source than by simple, direct-laser-irradiation of a flat foil; Direct-Foil-Irradiation (DFI). The computational studies - which are still ongoing at this writing - were performed primarily on the RedStorm supercomputer at Sandia National Laboratories Albuquerque site. The motivation for a higher efficiency K{alpha} emitter was very clear: as the backlighter flux for any x-ray imaging technique on the Z accelerator increases, the signal-to-noise and signal-to-background ratios improve. This ultimately allows the imaging system to reach its full quantitative potential as a diagnostic. Depending on the particular application/experiment this would imply, for example, that the system would have reached its full design spatial resolution and thus the capability to see features that might otherwise be indiscernible with a traditional DFI-like x-ray source. This LDRD began FY09 and ended FY10.
The outline of this presentation: (1) Proton acceleration with high-power lasers - Target Normal Sheath Acceleration concept; (2) Proton acceleration with mass-reduced targets - Breaking the 60 MeV threshold; (3) Proton beam divergence control - Novel focusing target geometry; and (4) New experimental capability development - Proton radiography on Z.
Abstract not provided.
Numerical simulations indicate that significant fusion yields (>100 kJ) may be obtained by pulsed-power-driven implosions of cylindrical metal liners onto magnetized and preheated deuterium-tritium fuel. The primary physics risk to this approach is the Magneto-Rayleigh-Taylor (MRT) instability, which operates during both the acceleration and deceleration phase of the liner implosion. We have designed and performed some experiments to study the MRT during the acceleration phase, where the light fluid is purely magnetic. Results from our first series of experiments and plans for future experiments will be presented. According to simulations, an initial axial magnetic field of 10 T is compressed to >100 MG within the liner during the implosion. The magnetic pressure becomes comparable to the plasma pressure during deceleration, which could significantly affect the growth of the MRT instability at the fuel/liner interface. The MRT instability is also important in some astronomical objects such as the Crab Nebula (NGC1962). In particular, the morphological structure of the observed filaments may be determined by the ratio of the magnetic to material pressure and alignment of the magnetic field with the direction of acceleration [Hester, ApJ, 456, 225 1996]. Potential experiments to study this MRT behavior using the Z facility will be presented.
Abstract not provided.
Abstract not provided.
Proposed for publication in Physics of Plasmas.
The Heavy Ion Fusion Science Virtual National Laboratory has achieved 60-fold longitudinal pulse compression of ion beams on the Neutralized Drift Compression Experiment (NDCX) [P. K. Roy et al., Phys. Rev. Lett. 95, 234801 (2005)]. To focus a space-charge-dominated charge bunch to sufficiently high intensities for ion-beam-heated warm dense matter and inertial fusion energy studies, simultaneous transverse and longitudinal compression to a coincident focal plane is required. Optimizing the compression under the appropriate constraints can deliver higher intensity per unit length of accelerator to the target, thereby facilitating the creation of more compact and cost-effective ion beam drivers. The experiments utilized a drift region filled with high-density plasma in order to neutralize the space charge and current of an {approx}300 keV K{sup +} beam and have separately achieved transverse and longitudinal focusing to a radius <2 mm and pulse duration <5 ns, respectively. Simulation predictions and recent experiments demonstrate that a strong solenoid (B{sub Z} < 100 kG) placed near the end of the drift region can transversely focus the beam to the longitudinal focal plane. This paper reports on simulation predictions and experimental progress toward realizing simultaneous transverse and longitudinal charge bunch focusing. The proposed NDCX-II facility would capitalize on the insights gained from NDCX simulations and measurements in order to provide a higher-energy (>2 MeV) ion beam user-facility for warm dense matter and inertial fusion energy-relevant target physics experiments.