Pre-Heat Optimization for Magnetized Liner Inertial Fusion at Sandia
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physics of Plasmas
Double-shell Ar gas puff implosions driven by 16.5 ± 0.5 MA on the Z generator at Sandia National Laboratories are very effective emitters of Ar K-shell radiation (photon energy >3 keV), producing yields of 330 ± 9% kJ [B. Jones et al., Phys. Plasmas 22, 020706 (2015)]. Previous simulations and experiments have reported dramatic increases in K-shell yields when adding an on-axis jet to double shell gas puffs for some configurations. We report on a series of experiments on Z testing Ar gas puff configurations with and without an on-axis jet guided by 3D magneto-hydrodynamic (MHD) simulations. Adding an on-axis jet was found to significantly improve the performance of some, but not all, configurations. The maximum observed K-shell yield of 375 ± 9% kJ was produced with a configuration that rapidly imploded onto an on-axis jet. A dramatic difference was observed in the plasma conditions at stagnation when a jet was used, producing a narrower stagnation column in experiments with a higher density but relatively lower electron temperature. The MHD simulations accurately reproduce the experimental measurements. The conversion efficiency for electrical energy delivered to the load to K-shell x-rays is estimated to be ∼12.5% for the best-performing configuration, similar to the best results from experiments at smaller facilities.
Physics of Plasmas
Radiation-magnetohydrodynamic simulations using the non-local thermodynamic equilibrium Mach2-Tabular Collisional-Radiative Equilibrium code in (r, z) geometry are performed for two pairs of recent Ar gas-puff Z-pinch experiments on the refurbished Z generator with an 8 cm diameter nozzle. One pair of shots had an outer-to-inner shell mass ratio of 1:1.6 and a second pair had a ratio of 1:1. In each pair, one of the shots had a central jet. The experimental trends in the Ar K-shell yield and power are reproduced in the calculations. However, the K-shell yield and power are significantly lower than the other three shots for the case of a double-shell puff of 1:1 mass ratio and no central jet configuration. Further simulations of a hypothetical experiment with the same relative density profile of this configuration, but higher total mass, show that the coupled energy from the generator and the K-shell yield can be increased to levels achieved in the other three configurations, but not the K-shell power. Based on various measures of effective plasma radius, the compression in the 1:1 mass ratio and no central jet case is found to be less because the plasma inside the magnetic piston is hotter and of lower density. Because of the reduced density, and the reduced radiation cooling (which is proportional to the square of the density), the core plasma is hotter. Consequently, for the 1:1 outer-to-inner shell mass ratio, the load mass controls the yield and the center jet controls the power.
Abstract not provided.
The MAGnetized Liner Inertial Fusion (MagLIF) scheme has achieved thermonuclear fusion yields on the Z Facility by imploding a cylindrical liner filled with D 2 fuel that is preheated with a multi-kJ laser and pre-magnetized with an axial Bz=10 T magnetic field. Preheating (T e = 100- 200 eV) and pre-magnetizing (10-30 T) the fuel serves to reduce the implosion velocity required to achieve multi-keV fusion-relevant temperatures at stagnation with a modest radial convergence. The challenge of fuel preheat in MagLIF is to deposit multiple-kJ of energy into the underdense (n e /n c %3C0.1) fuel over %7E10 mm target length efficiently and without introducing contaminants. Once the fuel is heated the applied axial magnetic field (o ce t e %7E 10) needs to suppress electron thermal conduction sufficiently to prevent unacceptable heat losses to the liner walls. In this LDRD we investigated laser energy deposition at two facilities: The OMEGA-EP laser at the Laboratory for Laser Energetics and the Z-beamlet laser at Sandia National Labs utilizing the PECOS chamber. Multiple experiments were carried out investigating laser transmission through LEH foils, laser heating of underdense gasses and the effects of magnetization on laser preheat. The studies find that magneto-hydrodynamic simulations are able to reproduce energy deposition at MagLIF-like conditions but that at the intensities currently used to preheat MagLIF significant laser plasma instabilities (LPI) occur which partly explain the inability of codes to reproduce previous MagLIF preheat studies. The experiments find that reducing the intensity and smoothing the beam dramatically reduces the amount of stimulated Brillouin backscatter and produces deposition profiles more similar to those produced in simulations. The experiments have provided a large and varied dataset that can be compared to simulations. As part of the LDRD new experimental capabilities have also been developed that will be used to design future MagLIF integrated experiments and investigate fuel magnetization.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Physics: Conference Series
Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ∼2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner∼1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Plans to improve and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. While magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Key LPI processes are determined, and mitigation methods are discussed. Results with and without improvement measures are presented.
Abstract not provided.
Physics of Plasmas
We present a platform on the OMEGA EP Laser Facility that creates and diagnoses the conditions present during the preheat stage of the MAGnetized Liner Inertial Fusion (MagLIF) concept. Experiments were conducted using 9 kJ of 3ω (355 nm) light to heat an underdense deuterium gas (electron density: 2.5×1020 cm-3=0.025 of critical density) magnetized with a 10 T axial field. Results show that the deuterium plasma reached a peak electron temperature of 670 ± 140 eV, diagnosed using streaked spectroscopy of an argon dopant. The results demonstrate that plasmas relevant to the preheat stage of MagLIF can be produced at multiple laser facilities, thereby enabling more rapid progress in understanding magnetized preheat. Results are compared with magneto-radiation-hydrodynamics simulations, and plans for future experiments are described.