Publications

Results 51–75 of 156
Skip to search filters

Diagnosing and mitigating laser preheat induced mix in MagLIF

Physics of Plasmas

Harvey-Thompson, Adam J.; Weis, M.R.; Harding, Eric H.; Geissel, Matthias G.; Ampleford, David A.; Chandler, Gordon A.; Fein, Jeffrey R.; Glinsky, Michael E.; Gomez, Matthew R.; Hahn, K.D.; Hansen, Stephanie B.; Jennings, C.A.; Knapp, P.F.; Paguio, R.R.; Perea, L.; Peterson, Kyle J.; Porter, John L.; Rambo, Patrick K.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, D.E.; Schwarz, Jens S.; Shores, J.E.; Sinars, Daniel S.; Slutz, S.A.; Smith, G.E.; Smith, Ian C.; Speas, C.S.; Whittemore, K.

A series of Magnetized Liner Inertial Fusion (MagLIF) experiments have been conducted in order to investigate the mix introduced from various target surfaces during the laser preheat stage. The material mixing was measured spectroscopically for a variety of preheat protocols by employing mid-atomic number surface coatings applied to different regions of the MagLIF target. The data show that the material from the top cushion region of the target can be mixed into the fuel during preheat. For some preheat protocols, our experiments show that the laser-entrance-hole (LEH) foil used to contain the fuel can be transported into the fuel a significant fraction of the stagnation length and degrade the target performance. Preheat protocols using pulse shapes of a few-ns duration result in the observable LEH foil mix both with and without phase-plate beam smoothing. In order to reduce this material mixing, a new capability was developed to allow for a low energy (∼20 J) laser pre-pulse to be delivered early in time (-20 ns) before the main laser pulse (∼1.5 kJ). In experiments, this preheat protocol showed no indications of the LEH foil mix. The experimental results are broadly in agreement with pre-shot two-dimensional HYDRA simulations that helped motivate the development of the early pre-pulse capability.

More Details

Enhancing performance of magnetized liner inertial fusion at the Z facility

Physics of Plasmas

Slutz, S.A.; Gomez, Matthew R.; Hansen, Stephanie B.; Harding, Eric H.; Hutsel, Brian T.; Knapp, P.F.; Lamppa, Derek C.; Awe, T.J.; Ampleford, David A.; Bliss, David E.; Chandler, Gordon A.; Cuneo, M.E.; Geissel, Matthias G.; Glinsky, Michael E.; Harvey-Thompson, Adam J.; Hess, Mark H.; Jennings, C.A.; Jones, Brent M.; Laity, G.R.; Martin, M.R.; Peterson, Kyle J.; Porter, John L.; Rambo, Patrick K.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Schwarz, Jens S.; Schmit, Paul S.; Shipley, Gabriel A.; Sinars, Daniel S.; Smith, Ian C.; Vesey, Roger A.; Weis, M.R.

The Magnetized Liner Inertial Fusion concept (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is being studied on the Z facility at Sandia National Laboratories. Neutron yields greater than 1012 have been achieved with a drive current in the range of 17-18 MA and pure deuterium fuel [Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. We show that 2D simulated yields are about twice the best yields obtained on Z and that a likely cause of this difference is the mix of material into the fuel. Mitigation strategies are presented. Previous numerical studies indicate that much larger yields (10-1000 MJ) should be possible with pulsed power machines producing larger drive currents (45-60 MA) than can be produced by the Z machine [Slutz et al., Phys. Plasmas 23, 022702 (2016)]. To test the accuracy of these 2D simulations, we present modifications to MagLIF experiments using the existing Z facility, for which 2D simulations predict a 100-fold enhancement of MagLIF fusion yields and considerable increases in burn temperatures. Experimental verification of these predictions would increase the credibility of predictions at higher drive currents.

More Details

One dimensional imager of neutrons on the Z machine

Review of Scientific Instruments

Ampleford, David A.; Ruiz, Carlos L.; Fittinghoff, David N.; Vaughan, Jeremy V.; Hahn, Kelly D.; Lahmann, Brandon; Gatu-Johnson, Maria; Frenje, Johan; Petrasso, Richard; Ball, Christopher R.; Maurer, A.; Knapp, Patrick K.; Harvey-Thompson, Adam J.; Fisher, John A.; Alberto, Perry; Torres, Jose A.; Cooper, Gary; Jones, Brent M.; Rochau, G.A.; May, Mark J.

We recently developed a one-dimensional imager of neutrons on the Z facility. The instrument is designed for Magnetized Liner Inertial Fusion (MagLIF) experiments, which produce D-D neutrons yields of ∼3 × 1012. X-ray imaging indicates that the MagLIF stagnation region is a 10-mm long, ∼100-μm diameter column. The small radial extents and present yields precluded useful radial resolution, so a one-dimensional imager was developed. The imaging component is a 100-mm thick tungsten slit; a rolled-edge slit limits variations in the acceptance angle along the source. CR39 was chosen as a detector due to its negligible sensitivity to the bright x-ray environment in Z. A layer of high density poly-ethylene is used to enhance the sensitivity of CR39. We present data from fielding the instrument on Z, demonstrating reliable imaging and track densities consistent with diagnosed yields. For yields ∼3 × 1012, we obtain resolutions of ∼500 μm.

More Details

Pushing Laser Pre-Heat in MagLIF

Geissel, Matthias G.; Geissel, Matthias G.; Harvey-Thompson, Adam J.; Fein, Jeffrey R.; Woodbury, Daniel W.; Davis, Daniel R.; Bliss, David E.; Scoglietti, Daniel S.; Gomez, Matthew R.; Ampleford, David A.; Awe, Thomas J.; Colombo, Anthony P.; Weis, Matthew R.; Jennings, Christopher A.; Glinsky, Michael E.; Slutz, Stephen A.; Ruiz, Daniel E.; Peterson, Kyle J.; Smith, Ian C.; Shores, Jonathon S.; Kimmel, Mark W.; Rambo, Patrick K.; Schwarz, Jens S.; Galloway, B.R.; Speas, Christopher S.; Porter, John L.

Abstract not provided.

Laser entrance window transmission and reflection measurements for preheating in magnetized liner inertial fusion

Physics of Plasmas

Davies, J.R.; Bahr, R.E.; Barnak, D.H.; Betti, R.; Bonino, M.J.; Campbell, E.M.; Hansen, E.C.; Harding, D.R.; Peebles, J.L.; Sefkow, A.B.; Seka, W.; Chang, P.Y.; Geissel, Matthias G.; Harvey-Thompson, Adam J.

Laser-driven magnetized liner inertial fusion (MagLIF) is being developed on the OMEGA Laser System to study scaling. MagLIF targets require a preheat laser entrance window that can hold the gas in the target yet allow sufficient laser energy to enter the gas. For OMEGA MagLIF targets, 1.8-μm-thick polyimide foils were found to be sufficient to hold a fuel pressure of up to 14 atm. Transmission and reflection of an OMEGA beam incident on such foils were measured with a calorimeter and time-resolved spectrometers for 2.5-ns square-shaped pulses, with energies from 60 to 200 J, focused to intensities from 0.65 to 2.2 × 1014 W/cm2. The laser energy transmitted in every case exceeded that required to achieve the goal of preheating the gas to 100 eV. The time-resolved measurements showed an initial period with very low, decreasing transmission, the duration of which decreased with increasing intensity, followed by a rapid transition to full transmission, accompanied by brief sidescattering of the transmitted light with a significant red shift. Reflection was always negligible. Two-dimensional radiation-hydrodynamic simulations, using 3-D ray tracing with inverse bremsstrahlung energy deposition, did not capture the rapid transition to full transmission, showing instead a slow increase in transmission, without significant sidescatter or red shift. We propose that full transmission is achieved by self-focusing followed by ponderomotive blowout of the plasma.

More Details

Assessing stagnation magnetized liner inertial fusion stagnation conditions and identifying trends

Gomez, Matthew R.; Slutz, Stephen A.; Knapp, Patrick K.; Hahn, Kelly D.; Harding, Eric H.; Ampleford, David A.; Awe, Thomas J.; Geissel, Matthias G.; Hansen, Stephanie B.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Myers, Clayton E.; Peterson, Kyle J.; Rochau, G.A.; Sinars, Daniel S.; Weis, Matthew R.; Yager-Elorriaga, David A.

Abstract not provided.

Assessing Magnetized Liner Inertial Fusion stagnation conditions and identifying trends

Gomez, Matthew R.; Slutz, Stephen A.; Knapp, Patrick K.; Hahn, Kelly D.; Harding, Eric H.; Ampleford, David A.; Awe, Thomas J.; Geissel, Matthias G.; Hansen, Stephanie B.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Myers, Clayton E.; Peterson, Kyle J.; Rochau, G.A.; Sinars, Daniel S.; Weis, Matthew R.; Yager-Elorriaga, David A.

Abstract not provided.

MagLIFEP and MagLIFSNL

Harvey-Thompson, Adam J.; wei, mingsheng w.; Glinsky, Michael E.; Weis, Matthew R.; Nagayama, Taisuke N.; Peterson, Kyle J.; Fooks, J.F.; Giraldez, E.G.; Krauland, C.K.; Campbell, M.C.; Davies, J.D.; Peebles, J.P.; Bahr, R.B.; Edgell, D.E.; Stoeckl, C.S.; Turnbull, D.T.; Glebov, V.Yu.; Emig, J.E.; Heeter, R.H.; Strozzi, D.S.

The MagLIF campaign operated by Sandia conducted a total of four shot days in FY17 (one on OMEGA and three on OMEGA-EP) aimed at characterizing the laser heating of underdense plasmas (D2, Ar) at parameters that are relevant to the Magnetized Liner Inertial Fusion (MagLIF) ICF scheme being pursued at Sandia National Laboratories [1] [2]. MagLIF combines fuel preheat, magnetization and pulsed power implosion to significantly relax the implosion velocity and pR required for self-heating. Effective fuel preheat requires coupling several kJ of laser energy into the 10 mm long, underdense (typically ne/nc<0.1) fusion fuel without introducing significant mix. Barriers to achieving this include the presence laser plasma instabilities (LPI) as laser energy is coupled to the initially cold fuel, and the presence of a thin, polyimide laser entrance hole (LEH) foil that the laser must pass through and that can be a significant perturbation.

More Details

Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets

Physics of Plasmas

Geissel, Matthias G.; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; Peterson, Kyle J.; Schollmeier, Marius; Schwarz, Jens S.; Shores, Jonathon S.; Slutz, Stephen A.; Sinars, Daniel S.; Smith, Ian C.; Speas, C.S.; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3-5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5-3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] as a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.

More Details

MagLIF Pre-Heat Optimization on the PECOS Surrogacy Platform

Geissel, Matthias G.; Harvey-Thompson, Adam J.; Awe, Thomas J.; Ampleford, David A.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; Peterson, Kyle J.; Rambo, Patrick K.; Rochau, G.A.; Schollmeier, Marius; Shores, Jonathon S.; Sinars, Daniel S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

Abstract not provided.

Pre-Heat Optimization for Magnetized Liner Inertial Fusion at Sandia

Geissel, Matthias G.; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; Peterson, Kyle J.; Schollmeier, Marius; Shores, Jonathon S.; Sinars, Daniel S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

Abstract not provided.

Utilization of Neutron Bang-time CVD diamond detectors at the Z Accelerator

Chandler, Gordon A.; Hahn, Kelly D.; Ruiz, Carlos L.; Jones, Brent M.; Alberto, Perry J.; Torres, Jose A.; Gomez, Matthew R.; Harding, Eric H.; Harvey-Thompson, Adam J.; Hess, Mark H.; Knapp, Patrick K.; Cooper, Gary C.; Styron, Jedediah S.; Moy, Ken M.; Mckenna, Ian M.; Glebov, Vladimir Y.; Fittinghoff, David N.; May, Mark J.; Snyder, Lucas S.; Bowers, Dan B.

Abstract not provided.

A Path to Increased Performance in Magnetized Liner Inertial Fusion

Gomez, Matthew R.; Slutz, Stephen A.; Jennings, Christopher A.; Harvey-Thompson, Adam J.; Weis, Matthew R.; Lamppa, Derek C.; Hutsel, Brian T.; Ampleford, David A.; Awe, Thomas J.; Bliss, David E.; Chandler, Gordon A.; Geissel, Matthias G.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric H.; Hess, Mark H.; Knapp, Patrick K.; Laity, George R.; Martin, Matthew; Nagayama, Taisuke N.; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Schmit, Paul S.; Schwarz, Jens S.; Smith, Ian C.; Vesey, Roger A.; Yu, Edmund Y.; Cuneo, M.E.; Jones, Brent M.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.; Sinars, Daniel S.; Stygar, William A.

Abstract not provided.

Results 51–75 of 156
Results 51–75 of 156