Publications

Results 51–100 of 156
Skip to search filters

Diagnosing and mitigating laser preheat induced mix in MagLIF

Physics of Plasmas

Harvey-Thompson, Adam J.; Weis, M.R.; Harding, Eric H.; Geissel, Matthias G.; Ampleford, David A.; Chandler, Gordon A.; Fein, Jeffrey R.; Glinsky, Michael E.; Gomez, Matthew R.; Hahn, K.D.; Hansen, Stephanie B.; Jennings, C.A.; Knapp, P.F.; Paguio, R.R.; Perea, L.; Peterson, Kyle J.; Porter, John L.; Rambo, Patrick K.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, D.E.; Schwarz, Jens S.; Shores, J.E.; Sinars, Daniel S.; Slutz, S.A.; Smith, G.E.; Smith, Ian C.; Speas, C.S.; Whittemore, K.

A series of Magnetized Liner Inertial Fusion (MagLIF) experiments have been conducted in order to investigate the mix introduced from various target surfaces during the laser preheat stage. The material mixing was measured spectroscopically for a variety of preheat protocols by employing mid-atomic number surface coatings applied to different regions of the MagLIF target. The data show that the material from the top cushion region of the target can be mixed into the fuel during preheat. For some preheat protocols, our experiments show that the laser-entrance-hole (LEH) foil used to contain the fuel can be transported into the fuel a significant fraction of the stagnation length and degrade the target performance. Preheat protocols using pulse shapes of a few-ns duration result in the observable LEH foil mix both with and without phase-plate beam smoothing. In order to reduce this material mixing, a new capability was developed to allow for a low energy (∼20 J) laser pre-pulse to be delivered early in time (-20 ns) before the main laser pulse (∼1.5 kJ). In experiments, this preheat protocol showed no indications of the LEH foil mix. The experimental results are broadly in agreement with pre-shot two-dimensional HYDRA simulations that helped motivate the development of the early pre-pulse capability.

More Details

Enhancing performance of magnetized liner inertial fusion at the Z facility

Physics of Plasmas

Slutz, S.A.; Gomez, Matthew R.; Hansen, Stephanie B.; Harding, Eric H.; Hutsel, Brian T.; Knapp, P.F.; Lamppa, Derek C.; Awe, T.J.; Ampleford, David A.; Bliss, David E.; Chandler, Gordon A.; Cuneo, M.E.; Geissel, Matthias G.; Glinsky, Michael E.; Harvey-Thompson, Adam J.; Hess, Mark H.; Jennings, C.A.; Jones, Brent M.; Laity, G.R.; Martin, M.R.; Peterson, Kyle J.; Porter, John L.; Rambo, Patrick K.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Schwarz, Jens S.; Schmit, Paul S.; Shipley, Gabriel A.; Sinars, Daniel S.; Smith, Ian C.; Vesey, Roger A.; Weis, M.R.

The Magnetized Liner Inertial Fusion concept (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is being studied on the Z facility at Sandia National Laboratories. Neutron yields greater than 1012 have been achieved with a drive current in the range of 17-18 MA and pure deuterium fuel [Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. We show that 2D simulated yields are about twice the best yields obtained on Z and that a likely cause of this difference is the mix of material into the fuel. Mitigation strategies are presented. Previous numerical studies indicate that much larger yields (10-1000 MJ) should be possible with pulsed power machines producing larger drive currents (45-60 MA) than can be produced by the Z machine [Slutz et al., Phys. Plasmas 23, 022702 (2016)]. To test the accuracy of these 2D simulations, we present modifications to MagLIF experiments using the existing Z facility, for which 2D simulations predict a 100-fold enhancement of MagLIF fusion yields and considerable increases in burn temperatures. Experimental verification of these predictions would increase the credibility of predictions at higher drive currents.

More Details

One dimensional imager of neutrons on the Z machine

Review of Scientific Instruments

Ampleford, David A.; Ruiz, Carlos L.; Fittinghoff, David N.; Vaughan, Jeremy V.; Hahn, Kelly D.; Lahmann, Brandon; Gatu-Johnson, Maria; Frenje, Johan; Petrasso, Richard; Ball, Christopher R.; Maurer, A.; Knapp, Patrick K.; Harvey-Thompson, Adam J.; Fisher, John A.; Alberto, Perry; Torres, Jose A.; Cooper, Gary; Jones, Brent M.; Rochau, G.A.; May, Mark J.

We recently developed a one-dimensional imager of neutrons on the Z facility. The instrument is designed for Magnetized Liner Inertial Fusion (MagLIF) experiments, which produce D-D neutrons yields of ∼3 × 1012. X-ray imaging indicates that the MagLIF stagnation region is a 10-mm long, ∼100-μm diameter column. The small radial extents and present yields precluded useful radial resolution, so a one-dimensional imager was developed. The imaging component is a 100-mm thick tungsten slit; a rolled-edge slit limits variations in the acceptance angle along the source. CR39 was chosen as a detector due to its negligible sensitivity to the bright x-ray environment in Z. A layer of high density poly-ethylene is used to enhance the sensitivity of CR39. We present data from fielding the instrument on Z, demonstrating reliable imaging and track densities consistent with diagnosed yields. For yields ∼3 × 1012, we obtain resolutions of ∼500 μm.

More Details

Pushing Laser Pre-Heat in MagLIF

Geissel, Matthias G.; Geissel, Matthias G.; Harvey-Thompson, Adam J.; Fein, Jeffrey R.; Woodbury, Daniel W.; Davis, Daniel R.; Bliss, David E.; Scoglietti, Daniel S.; Gomez, Matthew R.; Ampleford, David A.; Awe, Thomas J.; Colombo, Anthony P.; Weis, Matthew R.; Jennings, Christopher A.; Glinsky, Michael E.; Slutz, Stephen A.; Ruiz, Daniel E.; Peterson, Kyle J.; Smith, Ian C.; Shores, Jonathon S.; Kimmel, Mark W.; Rambo, Patrick K.; Schwarz, Jens S.; Galloway, B.R.; Speas, Christopher S.; Porter, John L.

Abstract not provided.

Laser entrance window transmission and reflection measurements for preheating in magnetized liner inertial fusion

Physics of Plasmas

Davies, J.R.; Bahr, R.E.; Barnak, D.H.; Betti, R.; Bonino, M.J.; Campbell, E.M.; Hansen, E.C.; Harding, D.R.; Peebles, J.L.; Sefkow, A.B.; Seka, W.; Chang, P.Y.; Geissel, Matthias G.; Harvey-Thompson, Adam J.

Laser-driven magnetized liner inertial fusion (MagLIF) is being developed on the OMEGA Laser System to study scaling. MagLIF targets require a preheat laser entrance window that can hold the gas in the target yet allow sufficient laser energy to enter the gas. For OMEGA MagLIF targets, 1.8-μm-thick polyimide foils were found to be sufficient to hold a fuel pressure of up to 14 atm. Transmission and reflection of an OMEGA beam incident on such foils were measured with a calorimeter and time-resolved spectrometers for 2.5-ns square-shaped pulses, with energies from 60 to 200 J, focused to intensities from 0.65 to 2.2 × 1014 W/cm2. The laser energy transmitted in every case exceeded that required to achieve the goal of preheating the gas to 100 eV. The time-resolved measurements showed an initial period with very low, decreasing transmission, the duration of which decreased with increasing intensity, followed by a rapid transition to full transmission, accompanied by brief sidescattering of the transmitted light with a significant red shift. Reflection was always negligible. Two-dimensional radiation-hydrodynamic simulations, using 3-D ray tracing with inverse bremsstrahlung energy deposition, did not capture the rapid transition to full transmission, showing instead a slow increase in transmission, without significant sidescatter or red shift. We propose that full transmission is achieved by self-focusing followed by ponderomotive blowout of the plasma.

More Details

Assessing stagnation magnetized liner inertial fusion stagnation conditions and identifying trends

Gomez, Matthew R.; Slutz, Stephen A.; Knapp, Patrick K.; Hahn, Kelly D.; Harding, Eric H.; Ampleford, David A.; Awe, Thomas J.; Geissel, Matthias G.; Hansen, Stephanie B.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Myers, Clayton E.; Peterson, Kyle J.; Rochau, G.A.; Sinars, Daniel S.; Weis, Matthew R.; Yager-Elorriaga, David A.

Abstract not provided.

Assessing Magnetized Liner Inertial Fusion stagnation conditions and identifying trends

Gomez, Matthew R.; Slutz, Stephen A.; Knapp, Patrick K.; Hahn, Kelly D.; Harding, Eric H.; Ampleford, David A.; Awe, Thomas J.; Geissel, Matthias G.; Hansen, Stephanie B.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Myers, Clayton E.; Peterson, Kyle J.; Rochau, G.A.; Sinars, Daniel S.; Weis, Matthew R.; Yager-Elorriaga, David A.

Abstract not provided.

MagLIFEP and MagLIFSNL

Harvey-Thompson, Adam J.; wei, mingsheng w.; Glinsky, Michael E.; Weis, Matthew R.; Nagayama, Taisuke N.; Peterson, Kyle J.; Fooks, J.F.; Giraldez, E.G.; Krauland, C.K.; Campbell, M.C.; Davies, J.D.; Peebles, J.P.; Bahr, R.B.; Edgell, D.E.; Stoeckl, C.S.; Turnbull, D.T.; Glebov, V.Yu.; Emig, J.E.; Heeter, R.H.; Strozzi, D.S.

The MagLIF campaign operated by Sandia conducted a total of four shot days in FY17 (one on OMEGA and three on OMEGA-EP) aimed at characterizing the laser heating of underdense plasmas (D2, Ar) at parameters that are relevant to the Magnetized Liner Inertial Fusion (MagLIF) ICF scheme being pursued at Sandia National Laboratories [1] [2]. MagLIF combines fuel preheat, magnetization and pulsed power implosion to significantly relax the implosion velocity and pR required for self-heating. Effective fuel preheat requires coupling several kJ of laser energy into the 10 mm long, underdense (typically ne/nc<0.1) fusion fuel without introducing significant mix. Barriers to achieving this include the presence laser plasma instabilities (LPI) as laser energy is coupled to the initially cold fuel, and the presence of a thin, polyimide laser entrance hole (LEH) foil that the laser must pass through and that can be a significant perturbation.

More Details

Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets

Physics of Plasmas

Geissel, Matthias G.; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; Peterson, Kyle J.; Schollmeier, Marius; Schwarz, Jens S.; Shores, Jonathon S.; Slutz, Stephen A.; Sinars, Daniel S.; Smith, Ian C.; Speas, C.S.; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3-5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5-3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] as a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.

More Details

MagLIF Pre-Heat Optimization on the PECOS Surrogacy Platform

Geissel, Matthias G.; Harvey-Thompson, Adam J.; Awe, Thomas J.; Ampleford, David A.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; Peterson, Kyle J.; Rambo, Patrick K.; Rochau, G.A.; Schollmeier, Marius; Shores, Jonathon S.; Sinars, Daniel S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

Abstract not provided.

Pre-Heat Optimization for Magnetized Liner Inertial Fusion at Sandia

Geissel, Matthias G.; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; Peterson, Kyle J.; Schollmeier, Marius; Shores, Jonathon S.; Sinars, Daniel S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

Abstract not provided.

Utilization of Neutron Bang-time CVD diamond detectors at the Z Accelerator

Chandler, Gordon A.; Hahn, Kelly D.; Ruiz, Carlos L.; Jones, Brent M.; Alberto, Perry J.; Torres, Jose A.; Gomez, Matthew R.; Harding, Eric H.; Harvey-Thompson, Adam J.; Hess, Mark H.; Knapp, Patrick K.; Cooper, Gary C.; Styron, Jedediah S.; Moy, Ken M.; Mckenna, Ian M.; Glebov, Vladimir Y.; Fittinghoff, David N.; May, Mark J.; Snyder, Lucas S.; Bowers, Dan B.

Abstract not provided.

A Path to Increased Performance in Magnetized Liner Inertial Fusion

Gomez, Matthew R.; Slutz, Stephen A.; Jennings, Christopher A.; Harvey-Thompson, Adam J.; Weis, Matthew R.; Lamppa, Derek C.; Hutsel, Brian T.; Ampleford, David A.; Awe, Thomas J.; Bliss, David E.; Chandler, Gordon A.; Geissel, Matthias G.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric H.; Hess, Mark H.; Knapp, Patrick K.; Laity, George R.; Martin, Matthew; Nagayama, Taisuke N.; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Schmit, Paul S.; Schwarz, Jens S.; Smith, Ian C.; Vesey, Roger A.; Yu, Edmund Y.; Cuneo, M.E.; Jones, Brent M.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.; Sinars, Daniel S.; Stygar, William A.

Abstract not provided.

Pre-Heat Optimization for Magnetized Liner Inertial Fusion at Sandia

Geissel, Matthias G.; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark W.; Knapp, Patrick K.; Peterson, Kyle J.; Schollmeier, Marius; Schwarz, Jens S.; Shores, Jonathon S.; Slutz, Stephen A.; Sinars, Daniel S.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

Abstract not provided.

Progress in Preconditioning MagLIF fuel and its Impact on Performance

Peterson, Kyle J.; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Geissel, Matthias G.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; Schollmeier, Marius; Schwarz, Jens S.; Sefkow, Adam B.; Shores, Jonathon S.; Slutz, Stephen A.; Sinars, Daniel S.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

Abstract not provided.

Developing a Pre-Heat Platform for MagLIF with Z-Beamlet

Geissel, Matthias G.; Awe, Thomas J.; Bliss, David E.; Campbell, Edward M.; Gomez, Matthew R.; Glinsky, Michael E.; Harding, Eric H.; Harvey-Thompson, Adam J.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; Peterson, Kyle J.; Schollmeier, Marius; Schwarz, Jens S.; Sefkow, Adam B.; Shores, Jonathon S.; Sinars, Daniel S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Porter, John L.; Rochau, G.A.

Abstract not provided.

Investigating the effect of adding an on-axis jet to Ar gas puff Z pinches on Z

Physics of Plasmas

Harvey-Thompson, Adam J.; Jennings, C.A.; Jones, Brent M.; Apruzese, J.P.; Ampleford, David A.; Lamppa, Derek C.; Coverdale, Christine A.; Cuneo, M.E.; Giuliani, J.L.; Hansen, Stephanie B.; Jones, Brent M.; Moore, Nathan W.; Rochau, G.A.; Thornhill, J.W.

Double-shell Ar gas puff implosions driven by 16.5 ± 0.5 MA on the Z generator at Sandia National Laboratories are very effective emitters of Ar K-shell radiation (photon energy >3 keV), producing yields of 330 ± 9% kJ [B. Jones et al., Phys. Plasmas 22, 020706 (2015)]. Previous simulations and experiments have reported dramatic increases in K-shell yields when adding an on-axis jet to double shell gas puffs for some configurations. We report on a series of experiments on Z testing Ar gas puff configurations with and without an on-axis jet guided by 3D magneto-hydrodynamic (MHD) simulations. Adding an on-axis jet was found to significantly improve the performance of some, but not all, configurations. The maximum observed K-shell yield of 375 ± 9% kJ was produced with a configuration that rapidly imploded onto an on-axis jet. A dramatic difference was observed in the plasma conditions at stagnation when a jet was used, producing a narrower stagnation column in experiments with a higher density but relatively lower electron temperature. The MHD simulations accurately reproduce the experimental measurements. The conversion efficiency for electrical energy delivered to the load to K-shell x-rays is estimated to be ∼12.5% for the best-performing configuration, similar to the best results from experiments at smaller facilities.

More Details

Simulations of Ar gas-puff Z-pinch radiation sources with double shells and central jets on the Z generator

Physics of Plasmas

Tangri, V.; Harvey-Thompson, Adam J.; Giuliani, J.L.; Thornhill, J.W.; Velikovich, A.L.; Apruzese, J.P.; Ouart, N.D.; Dasgupta, A.; Jones, Brent M.; Jennings, C.A.

Radiation-magnetohydrodynamic simulations using the non-local thermodynamic equilibrium Mach2-Tabular Collisional-Radiative Equilibrium code in (r, z) geometry are performed for two pairs of recent Ar gas-puff Z-pinch experiments on the refurbished Z generator with an 8 cm diameter nozzle. One pair of shots had an outer-to-inner shell mass ratio of 1:1.6 and a second pair had a ratio of 1:1. In each pair, one of the shots had a central jet. The experimental trends in the Ar K-shell yield and power are reproduced in the calculations. However, the K-shell yield and power are significantly lower than the other three shots for the case of a double-shell puff of 1:1 mass ratio and no central jet configuration. Further simulations of a hypothetical experiment with the same relative density profile of this configuration, but higher total mass, show that the coupled energy from the generator and the K-shell yield can be increased to levels achieved in the other three configurations, but not the K-shell power. Based on various measures of effective plasma radius, the compression in the 1:1 mass ratio and no central jet case is found to be less because the plasma inside the magnetic piston is hotter and of lower density. Because of the reduced density, and the reduced radiation cooling (which is proportional to the square of the density), the core plasma is hotter. Consequently, for the 1:1 outer-to-inner shell mass ratio, the load mass controls the yield and the center jet controls the power.

More Details

Investigating Laser Preheat and Applied Magnetic Fields Relevant to the MagLIF Fusion Scheme

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Sefkow, Adam B.; Nagayama, Taisuke N.

The MAGnetized Liner Inertial Fusion (MagLIF) scheme has achieved thermonuclear fusion yields on the Z Facility by imploding a cylindrical liner filled with D 2 fuel that is preheated with a multi-kJ laser and pre-magnetized with an axial Bz=10 T magnetic field. Preheating (T e = 100- 200 eV) and pre-magnetizing (10-30 T) the fuel serves to reduce the implosion velocity required to achieve multi-keV fusion-relevant temperatures at stagnation with a modest radial convergence. The challenge of fuel preheat in MagLIF is to deposit multiple-kJ of energy into the underdense (n e /n c %3C0.1) fuel over %7E10 mm target length efficiently and without introducing contaminants. Once the fuel is heated the applied axial magnetic field (o ce t e %7E 10) needs to suppress electron thermal conduction sufficiently to prevent unacceptable heat losses to the liner walls. In this LDRD we investigated laser energy deposition at two facilities: The OMEGA-EP laser at the Laboratory for Laser Energetics and the Z-beamlet laser at Sandia National Labs utilizing the PECOS chamber. Multiple experiments were carried out investigating laser transmission through LEH foils, laser heating of underdense gasses and the effects of magnetization on laser preheat. The studies find that magneto-hydrodynamic simulations are able to reproduce energy deposition at MagLIF-like conditions but that at the intensities currently used to preheat MagLIF significant laser plasma instabilities (LPI) occur which partly explain the inability of codes to reproduce previous MagLIF preheat studies. The experiments find that reducing the intensity and smoothing the beam dramatically reduces the amount of stimulated Brillouin backscatter and produces deposition profiles more similar to those produced in simulations. The experiments have provided a large and varied dataset that can be compared to simulations. As part of the LDRD new experimental capabilities have also been developed that will be used to design future MagLIF integrated experiments and investigate fuel magnetization.

More Details

Overview of Neutron diagnostic measurements for MagLIF Experiments on the Z Accelerator

Hahn, Kelly D.; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary W.; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel S.; Hansen, Stephanie B.; Knapp, Patrick K.; Schmit, Paul S.; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias G.; Rovang, Dean C.; Torres, Jose A.; Bur, James A.; Cuneo, M.E.; Glebov, V.Yu.; Harvey-Thompson, Adam J.; Hess, Mark H.; Johns, Owen J.; Jones, Brent M.; Lamppa, Derek C.; Lash, Joel S.; Martin, Matthew; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Reneker, Joseph R.; Robertson, Grafton K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Abstract not provided.

DIAGNOSING MAGNETIZED LINER INERTIAL FUSION EXPERIMENTS USING NEUTRON DIAGNOSTICS ON THE Z ACCELERATOR

Hahn, Kelly D.; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary W.; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel S.; Hansen, Stephanie B.; Knapp, Patrick K.; Schmit, Paul S.; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias G.; Rovang, Dean C.; Torres, Jose A.; Bur, James A.; Cuneo, M.E.; Glebov, V.Yu.; Harvey-Thompson, Adam J.; Hess, Mark H.; Johns, Owen J.; Jones, Brent M.; Lamppa, Derek C.; Lash, Joel S.; Martin, Matthew; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Reneker, Joseph R.; Robertson, Grafton K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Abstract not provided.

Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

Journal of Physics: Conference Series

Hahn, K.D.; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary W.; Gomez, Matthew R.; Slutz, S.; Sefkow, Adam B.; Sinars, Daniel S.; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul S.; Harding, Eric H.; Jennings, C.A.; Awe, T.J.; Geissel, Matthias G.; Rovang, Dean C.; Torres, Jose A.; Bur, J.A.; Cuneo, M.E.; Glebov, V.Y.; Harvey-Thompson, Adam J.; Herrman, M.C.; Hess, Mark H.; Johns, Owen J.; Jones, Brent M.; Lamppa, Derek C.; Lash, Joel S.; Martin, M.R.; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Reneker, Joseph R.; Robertson, Grafton K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ∼2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner∼1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Plans to improve and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.

More Details

Analyzing non-LTE Kr plasmas produced in high energy density experiments: From the Z machine to the National Ignition Facility

Ampleford, David A.; Dasgupta, A.D.; Clark, R.E.; Giuliani, J.G.; Ouart, N.D.; Velikovich, A.L.; Hansen, Stephanie B.; Jennings, Christopher A.; Flanagan, Timothy M.; Bell, Kate S.; Harvey-Thompson, Adam J.; Jones, Brent M.; May, M.M.; Barrios, M.B.; Scott, H.S.; Fournier, K.F.; Colvin, J.C.; Kemp, G.K.

Abstract not provided.

SBS Measurements for Sandia's MagLIF Program

Geissel, Matthias G.; Awe, Thomas J.; Bliss, David E.; Campbell, Edward M.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Harvey-Thompson, Adam J.; Kimmel, Mark W.; Knapp, Patrick K.; Peterson, Kyle J.; Jennings, Christopher A.; Sefkow, Adam B.; Shores, Jonathon S.; Sinars, Daniel S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Weis, Matthew R.; Porter, John L.

Abstract not provided.

Delivering Kilojoules of Pre-Heat to Fusion Targets in Sandia's Z-Machine

Geissel, Matthias G.; Awe, Thomas J.; Campbell, E.M.C.; Gomez, Matthew R.; Harding, Eric H.; Harvey-Thompson, Adam J.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; McBride, Ryan D.; Peterson, Kyle J.; Schollmeier, Marius; Sefkow, Adam B.; Shores, Jonathon S.; Sinars, Daniel S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Porter, John L.

Abstract not provided.

Nonlinear laser-plasma interaction in magnetized liner inertial fusion

Proceedings of SPIE - The International Society for Optical Engineering

Geissel, Matthias G.; Awe, T.J.; Bliss, David E.; Campbell, Edward M.; Gomez, Matthew R.; Harding, Eric H.; Harvey-Thompson, Adam J.; Hansen, Stephanie B.; Jennings, C.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; McBride, Ryan D.; Peterson, Kyle J.; Schollmeier, Marius; Scoglietti, Daniel S.; Sefkow, Adam B.; Shores, J.E.; Sinars, Daniel S.; Slutz, S.A.; Smith, Ian C.; Speas, C.S.; Vesey, Roger A.; Porter, John L.

Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. While magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Key LPI processes are determined, and mitigation methods are discussed. Results with and without improvement measures are presented.

More Details

Diagnosing laser-preheated magnetized plasmas relevant to magnetized liner inertial fusion

Physics of Plasmas

Harvey-Thompson, Adam J.; Sefkow, Adam B.; Nagayama, Taisuke N.; Wei, M.S.; Campbell, Edward M.; Fiksel, G.; Chang, P.Y.; Davies, J.R.; Barnak, D.H.; Glebov, V.Y.; Fitzsimmons, P.; Fooks, J.; Blue, B.E.

We present a platform on the OMEGA EP Laser Facility that creates and diagnoses the conditions present during the preheat stage of the MAGnetized Liner Inertial Fusion (MagLIF) concept. Experiments were conducted using 9 kJ of 3ω (355 nm) light to heat an underdense deuterium gas (electron density: 2.5×1020 cm-3=0.025 of critical density) magnetized with a 10 T axial field. Results show that the deuterium plasma reached a peak electron temperature of 670 ± 140 eV, diagnosed using streaked spectroscopy of an argon dopant. The results demonstrate that plasmas relevant to the preheat stage of MagLIF can be produced at multiple laser facilities, thereby enabling more rapid progress in understanding magnetized preheat. Results are compared with magneto-radiation-hydrodynamics simulations, and plans for future experiments are described.

More Details
Results 51–100 of 156
Results 51–100 of 156